Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Treatment for Wastewater in Open-pit Mines

15.03.2012
Together with the Technical University Bergakademie Freiberg Siemens has developed plants for the treatment of wastewater in open-pit mines, which make the ore extraction process more environmentally friendly.

As the operators can reuse the treated water, the mine requires less water. The wastewater produced by mines is in parts very acidic which contributes to the extraction of metals. The processing plant can treat the most part of the mine's wastewater. A pilot plant for the new treatment technology is installed at a copper mine in Chile.


Everyday, copper mines use tens of thousands of cubic meters of water - some mines even use over one hundred thousand. This corresponds to the water consumption of a medium sized city. Many mines cannot expand their production because they do not have enough water.

Mine operators in Chile are building desalination facilities for sea water and are pumping the valuable water from the coast to the mining regions, which are located at an altitude of 3,000 meters. The wastewater is used to transport fine grain residues to big reservoirs. Increasing water shortages and stringent environmental regulations are forcing mine operators to think about treating and reusing the wastewater.

Siemens is exploiting this trend and is transferring tested processes from the treatment of drinking water to the mines. In the mobile pilot plant, the contaminated water is passed through two treatment stages:

First a micro filters remove particles that are bigger than a thousandth of a millimeter. In the next stage - nanofiltration - the water is passed through a membrane with nanopores so that nearly all pollutants are separated from the water. What is left is pure water of a high quality and a concentrated solution of the contaminants, which must then be disposed of.

The throughput of the pilot plant is nearly 100 cubic meters of water per day - a fraction of the wastewater produced by a mine. Siemens uses the plant to demonstrate the process and to analyze the wastewater produced by a mine, as the composition of each mine's wastewater is different. The data gained by the pilot plant serves as the foundation for the design of the actual treatment facility.

Siemens has been cooperating with the Technical University Bergakademie Freiberg for some years to research innovative concepts for the treatment of wastewater from mines. As the company with the largest environmental portfolio worldwide, which generated sales of approximately €30 billion in fiscal 2011, Siemens can and will make a major contribution in this area.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>