Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traumatized Trees: Bug Them Enough, They Get Fired Up

14.04.2010
Whether forests are dying back, or just drying out, projections for warming show the Pacific Northwest is becoming primed for more wildfires.

The area burned by fire each year is expected to double – or even triple – if temperatures increase by about 3.5 degrees Fahrenheit (2 C) in our region, according to University of Washington and USDA Forest Service research. Such temperature increases could occur in as little as 40 years, according to projections from the UW’s Climate Impacts Group.

“I’m not a doom-and-gloom kind of guy but this is a great concern,” said Dave Peterson, a UW professor of forest resources and a biologist with the Forest Service’s Pacific Northwest Research Station.

Fuels built up after a century of rushing to suppress fires have long been pointed to as the reason for growing numbers of wildfires. That’s indeed a major factor, Peterson said, but starting in 1993 UW’s Jim Agee, now professor emeritus of forest resources, was the first to point out that climate was probably a contributing factor.

Now it is projected that warming temperatures may not only affect wildfires but also reduce snowpack, causing higher winter runoff and the prospect of more floods washing out roads and wiping out fish habitat, Peterson said.

How to manage forests in the face of these and other challenges triggered by global warming?

The nation may look toward Washington’s Olympic National Forest for ways to tackle the job. Guided by the latest information from scientists like Peterson, land managers there have moved from talking in general about climate-change effects to discussing concrete steps that may make sense. The process – an unprecedented example of collaboration in climate change adaptation – might be a blueprint for other national forests, national parks and natural resources agencies, Peterson said. The process is already occurring in national forests in California and Wyoming.

Three years ago natural resources staff officer Kathy O’Halloran of the Olympic National Forest invited Peterson and UW research scientist Jeremy Littell to start talking with managers at the park about projected climate change effects.

Ideas generated include planting more drought-tolerant species, such as western white pine and suitable varieties of Douglas fir. Another idea was to plan for higher water flows when designing log structures in creeks to enhance fish habitat, replacing culverts or planning road maintenance. Costs will have to be weighed before any steps are actually taken, O’Halloran said.

A key suggestion from scientists to planners is to recognize that cycles seen historically may not be a reliable guide to how forests will react to more fast-paced change from a warming climate.

"Climate modeling indicates that compared to the historical record, we will likely have more frequent extreme events, such as intense rain storms and heat waves,” said Littell, a member of the UW’s Climate Impacts Group. “That, combined with the kind of long-term climate variability we see in the historical record, puts us into new climatic territory when it comes to disturbances like wildfire and insects. We don't often plan for the combination of future extremes and the variability in the historical record."

The mountain pine beetle is an example. The tiny insect has for many decades routinely attacked and killed trees, particularly lodgepole and ponderosa pines found in mountainous areas of western United States and Canada and places such as Eastern Washington. (Outbreaks in Western Washington and Western Oregon are muted because those areas have fewer of the pine-dominated forests favored by the beetle.)

“The difference between now and our prior history is the magnitude of the impact,” said Elaine Oneil, UW research associate in forest resources. “We basically have massive bark beetle outbreaks in the western U.S. and Canada over the entire extent of pines that are susceptible. We’re seeing these massive mortality events of millions and millions of acres.”

Such outbreaks are uncharacteristic and consistent with the idea that climate change is tipping the balance in favor of the insect over the tree, she said.

In Eastern Washington Oneil recently found a tenfold increase in the average mortality from the beetle compared to the previous 20 years. And the deaths were not because trees were growing too thickly or had outlived their natural lives, as she had expected. Instead, the mortality since 2000 seems strongly linked to climate, she said.

The result can be fires like the 2006 Tripod Complex Fire in the North Cascades of Washington. Ignited by two lightning strikes, the fire consumed 175,000 acres, or nearly 275 square miles. Oneil studied the area in the five years leading up to the fire as a massive beetle infestation took hold. Firefighters told her the areas with the greatest infestations were those that burned hottest, were the hardest to control and resulted in the most damage.

Portions of the Tripod burn area that were harvested prior to the fire are places where the forest is coming back first. This finding may aid those investigating ways to harvest or thin trees and clear surface fuels to make forest stands vigorous enough to resist both insects and fire, Peterson said. If such steps already are being taken, then making forests more climate resistant might just mean thinning a bit more heavily and removing an additional amount of fuels, he and other scientists suggest.

The effects of climate change on forests are not all negative. For some high-elevation forests, for instance, warming will mean longer growing seasons, faster growth and more tree regeneration. Still, it takes a long time for a tree to grow while it can die in a short time.

“Any change in tree growth pales in comparison to ecosystem disturbances,” Peterson said. “Big fires and big insect outbreaks can kill all the trees on the landscape.”

For more information:
Peterson, 206-409-3924 cell, wild@u.washington.edu
Littell, 206-221-2997, jlittell@u.washington.edu
Oneil, 206-543-8684, eoneil@u.washington.edu
Kathy O’Halloran, 360-956-2430, kohalloran@fs.fed.us
Agee, because Agee is emeritus it is best to contact him by e-mail, jagee@u.washington.edu

Sandra Hines | Newswise Science News
Further information:
http://www.washington.edu

More articles from Ecology, The Environment and Conservation:

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

nachricht Species Richness – a false friend? Scientists want to improve biodiversity assessments
01.08.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>