Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trash Burning Worldwide Significantly Worsens Air Pollution

29.08.2014

Unregulated trash burning around the globe is pumping far more pollution into the atmosphere than shown by official records.

A new study led by the National Center for Atmospheric Research estimates that more than 40 percent of the world’s garbage is burned in such fires, emitting gases and particles that can substantially affect human health and climate change.


Photo courtesy Global Environment Facility.

Open burning of trash, as seen here in General Santos, Philippines, is a global phenomenon that has significant effects on air quality.

The new study provides the first rough estimates, on a country-by-country basis, of pollutants such as particulates, carbon monoxide, and mercury that are emitted by the fires. Such pollutants have been linked to serious medical issues.

The researchers also estimated emissions of carbon dioxide, the most common greenhouse gas produced by human activity.

Unlike emissions from commercial incinerators, the emissions from burning trash in open fires often go unreported to environmental agencies and are left out of many national inventories of air pollution. For that reason, they are not incorporated into policy making.

“Air pollution across much of the globe is significantly underestimated because no one is tracking open-fire burning of trash,” said NCAR scientist Christine Wiedinmyer, lead author of the new study. “The uncontrolled burning of trash is a major source of pollutants, and it’s one that should receive more attention.”

Quantifying the extent of burning trash may change how policy makers track emissions, as well as how scientists incorporate air pollution into computer models used to study the atmosphere.

Because trash burning is unregulated and unmonitored, Wiedinmyer said that actual emissions could be larger or smaller than the study’s estimates by a factor of two. Still, the analysis represents the most comprehensive effort to date to account for emissions from trash burning.

The new study, published in Environmental Science & Technology, was funded by the National Science Foundation, which is NCAR’s sponsor. It was co-authored by scientists from the University of Montana and the U.S. Environmental Protection Agency who were also involved in measuring the composition of trash-burning emissions.

-----Shrouded in smoke-----

Trash burning is a global phenomenon. But it is most prevalent in developing countries where there are fewer trash disposal facilities, such as landfills and incinerators.

The amount of garbage burned in remote villages and crowded megacities is likely on the rise, as more people worldwide are consuming more goods. The trash often contains discarded plastics and electronics as well as traditional materials such as food scraps and wood.

Wiedinmyer began wondering about the impact of burning trash while visiting remote villages in Ghana. The villages were shrouded in smoke caused in part from trash fires that smoldered all day.

To estimate emissions from trash fires, Wiedinmyer and her co-authors compared population figures and per capita waste production with official tallies of trash disposal for each country in the world. They estimated that 1.1 billion tons, or 41 percent, of the total waste generated worldwide is disposed of through unregulated burning every year.

The countries that produce the most total waste, according to the study’s methods, are heavily populated countries with various levels of industrial development: China, the United States, India, Japan, Brazil, and Germany. But the nations with the greatest emissions from trash burning are populous developing countries: China, India, Brazil, Mexico, Pakistan, and Turkey, the study concluded.

By analyzing consumption patterns in each country, the research team then estimated the type and amount of pollutants from the fires.

The study concluded that as much as 29 percent of human-related global emissions of small particulates (less than 2.5 microns in diameter) come from the fires, as well as 10 percent of mercury and 40 percent of a group of gases known as polycyclic aromatic hydrocarbons (PAHs). These pollutants have been linked to such significant health impacts as decreased lung function, neurological disorders, cancer, and heart attacks.

Trash burning in some countries accounts for particularly high quantities of certain types of pollutants. In China, for example, 22 percent of larger particles (those up to 10 microns in diameter) come from burning garbage.

The global impact on greenhouse gas emissions appears to be less, though still significant, with burning trash producing an estimated 5 percent of human-related carbon dioxide emissions. (By comparison, the Kyoto Protocol strove for a global 5 percent cut in greenhouse-gas emissions from industrialized countries.) In certain developing countries—such as Lesotho, Burundi, Mali, Somalia, and Sri Lanka—the trash burning produces more carbon dioxide than is tallied in official inventories. This discrepancy can be important in international negotiations over reducing greenhouse gas emissions.

Wiedinmyer said the next step in her research will be to track the pollutants to determine where they are having the greatest impacts.

“This study was a first step to put some bounds on the magnitude of this issue,” she said. “The next step is to look at what happens when these pollutants are emitted into the atmosphere—where are they being transported and which populations are being most affected.”

-----About the article-----

Title: Global Emissions of Trace Gases, Particulate Matter, and Hazardous Air Pollutants from Open Burning of Domestic Waste

Authors: Christine Wiedinmyer, Robert J. Yokelson, and Brian K. Gullett

Publication: Environmental Science and Technology

-----On the Web----

For news releases, images, and more:
www.ucar.edu/atmosnews

The University Corporation for Atmospheric Research (UCAR) manages NCAR under sponsorship by the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this release do not necessarily reflect the views of the National Science Foundation.

Contact Information

David Hosansky, NCAR/UCAR Media Relations
303-497-8611
hosansky@ucar.edu

Bob Henson, NCAR/UCAR Media Relations
303-497-8605
bhenson@ucar.edu

David Hosansky | newswise

Further reports about: Burning Environmental NCAR Pollution Trash UCAR dioxide emissions greenhouse pollutants

More articles from Ecology, The Environment and Conservation:

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht From waste to resource – how can we turn garbage into gold?
27.04.2016 | DLR Projektträger

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Identifying drug targets for leukaemia

02.05.2016 | Life Sciences

Clay nanotube-biopolymer composite scaffolds for tissue engineering

02.05.2016 | Materials Sciences

NASA's Fermi Telescope helps link cosmic neutrino to blazar blast

02.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>