Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traffic emissions may pollute 1 in 3 Canadian homes

22.04.2015

Engineering studies find harmful vehicle emissions spread farther than thought, with variable pollution levels across cities

A trio of recently published studies from a team of University of Toronto engineers has found that air pollution could be spreading up to three times farther than thought--contributing to varying levels of air quality across cities.


Soon to be published in Atmospheric Environment, this map shows the varying levels of ultrafine particles throughout the city of Toronto.

Credit: Greg Evans/ Atmospheric Environment

Past research on air pollution from vehicle tailpipes has shown poor air quality anywhere between 100 to 250 metres of major roadways.

But in a paper published in the recent edition of the journal Atmospheric Pollution Research, U of T chemical engineer Greg Evans (ChemE) and his partners at Environment Canada have found that concentrations of pollutants from traffic are still double at a distance of 280 metres downwind from highway 400 north of Toronto.

One in three Canadians, and half of all Torontonians, lives within 250 meters of at least one major roadway. These roads, says Evans, range from 10-lane highways to most four-lane streets with steady traffic.

"We used to think that living near a major road meant that you lived near a lot of air pollution," says Evans. "But what we're finding is that it's not that simple, someone living right on a major road in the suburbs may not be exposed to as much pollution as someone living downtown on a side street near many major roads."

In the same study, Evans demonstrated that for somebody living near multiple roads, they could be exposed to up to ten times more pollutants than if they didn't live near any major roads.

"It used to be that we measured air quality on a regional or city scale," says Evans. "But now we're starting to understand that we need to measure air quality on a more micro scale, especially around major roadways."

According to Health Canada, poor air quality from traffic pollution is associated with a number of health issues, such as asthma in children and other respiratory diseases, heart disease, cancer, and increased rates of premature death in adults. The Canadian Medical Association attributes 21,000 premature deaths each year in Canada to air pollution. A separate study published last month also linked traffic pollution to delayed cognitive development in children.

Lab in a truck

Throughout 2014, the research team travelled the streets of Toronto measuring vehicle emissions from a mobile lab that resembles a Canada Post mail truck.

"One of the aspects of our work that's unique is that we're using real-time instruments to make measurements in seconds," says Evans. "You have to do the measurements right there, right away, or the exhaust will be gone."

The team's findings suggest that people living or spending time near major roadways could be exposed to elevated levels of a dangerous chemical brew of ultrafine particles, volatile organic compounds, black carbon and other pollutants.

"The ultrafine particles are particularly troubling," says Evans. "Because they are over 1000 times smaller than the width of a human hair, they have a greater ability to penetrate deeper within the lung and travel in the body."

On a typical summer day in Toronto, Evans' instruments measure approximately 20,000 ultrafine particles in each cubic centimetre of air. This means that for every average breath, Torontonians are inhaling 10 million of these nano-sized particles. These numbers increases to 30,000 and 15 million in the winter, when there is more stagnant air and less evaporation of the compounds.

25% of cars causing 90% of pollution

A second paper by Evans and colleagues, published in the March 2015 edition of the journal Atmospheric Measurement Techniques, suggests that a small number of older or "badly tuned" cars and trucks produce the majority of vehicle pollution.

The study made on-the-spot measurements of 100,000 vehicles as they drove past air-sampling probes of the main laboratory on College Street, one of Toronto's many major roadways.

Evans and team found that one-quarter of the vehicles on the road produced:

  • 95% of black carbon (or "soot"),

     

  • 93% of carbon monoxide,

     

  • and 76% of volatile organic compounds such as benzene, toluene, ethylbenzene, and xylenes, some of which are known-carcinogens

     

"The most surprising thing we found was how broad the range of emissions was," says Evans. "As we looked at the exhaust coming out of individual vehicles, we saw so many variations. How you drive, hard acceleration, age of the vehicle\e, how the car is maintained--these are things we can influence that can all have an effect on pollution."

A vehicle emissions map of Toronto

A third paper, due out in the June 2015 edition of the journal Atmospheric Environment, looks at variations in traffic pollution throughout Toronto, evaluating how exposure to largely unexplored, unregulated ultrafine particles varies across the city.

Evans is currently working with Environment Canada, the Ontario Ministry of the Environment and Climate Change and Metro Vancouver to design, test and install new air quality measurement stations around the cities of Toronto and Vancouver. These stations will support enhanced monitoring of the air quality health index during this summer's Pan Am games in Toronto. More broadly, this research will provide a basis for future near road air quality monitoring in cities across Canada so as to get a more accurate portrayal of the exposure of Canadians to traffic pollution.

Evans and team hope that their research may someday lead to policy changes that could help better target the small number of vehicles that pollute the most, as well as to better decide where to build schools, hospitals, daycares, seniors residences and other structures to protect people who are especially vulnerable to air pollution.

RJ Taylor | EurekAlert!

Further reports about: EMISSIONS Toronto Traffic roadways ultrafine particles

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>