Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Down a Big Nutrient Pollutant in Chesapeake

11.05.2012
Too much of a good thing can kill you, the saying goes.

Such is the case in the Chesapeake Bay, North America’s largest estuary, where an overabundance of nutrients fosters the formation of an oxygen-starved “dead zone” every summer. In its annual health report card last year, the bay earned only a D+.

Deb Jaisi, an assistant professor of plant and soil sciences at the University of Delaware, wants to seek out the sources of a key nutrient so excessive that it has become a pollutant in the Chesapeake Bay — phosphorus (P).

Jaisi wants to literally get to the bottom of this nutrient’s influx by analyzing the phosphorus present in a set of sediment cores extracted from the seafloor of the upper bay, middle bay and lower bay. The cores offer a glimpse into the geological and environmental record of approximately the past 75 years.

The Oak Ridge Associated Universities (ORAU), a consortium of 105 major Ph.D.-granting academic institutions, has high hopes for Jaisi’s research. Recently, Jaisi was one of 30 scientists selected nationwide to receive ORAU’s Ralph E. Powe Junior Faculty Enhancement Award. The award is intended to enrich the research and professional growth of young faculty and result in new funding opportunities.

Jaisi will receive $5,000 in seed funding from ORAU and $5,000 in matching funding from UD to launch his Chesapeake study.

According to Jaisi, phosphorus in the bay comes from three primary sources: the land, the ocean, and the buried sediments from where phosphorus is remobilized and reintroduced into the bay. However, current nutrient management efforts focus solely on reducing inputs from land.

“The contribution of these three major sources of phosphorus has varied since colonial times,” says Jaisi, who joined the UD faculty last year. “The prevailing notion that the increase in terrestrial phosphorus alone is the tipping point for the bay’s eutrophication is questionable.”

When his new state-of-the-art isotope lab is completed in UD’s College of Agriculture and Natural Resources this summer, Jaisi and his team of graduate students and postdoctoral researchers will begin using a prized new instrument called a thermo-chemical elemental analyzer (TC/EA) coupled to an isotope mass spectrometer (IRMS) to assess the presence and levels of the distinctively different forms, or isotopes, of phosphorus.

Each phosphorus source, from fertilizers used on land, to wastewater effluents, seafloor sediments, or the ocean, usually has a distinctive isotope composition or “signature” retained in the sediment cores. By comparing data from the same historical period in the sediment cores, Jaisi and his research group will be able to identify the relative contributions of different phosphorus sources over time.

“The strength of this work is that it applies the natural abundance of stable isotopes to ‘fingerprint’ the phosphorus sources for the first time in the Chesapeake Bay,” Jaisi notes. “We’ll be able to see how much phosphorus is derived from the land versus from the ocean. Over time, the analysis will reveal the real culprit in the Chesapeake Bay’s nutrient overenrichment.”

Jaisi says he hopes the work will expand knowledge of the estuary’s nutrient diet and provide information useful to resource managers in controlling phosphorus overloads. He envisions the eventual development of detailed nutrient maps of the bay, as well as the rivers that drain into it.

Originally from Nepal, home of Mount Everest, Jaisi began using isotopes to explore nutrient issues as a postdoctoral fellow at Yale University. He says the University of Delaware has provided a perfect fit for his research.

“This is an area where phosphorus is a big and hot issue,” he says. “Here, the bay and my laboratory are side by side."

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>