Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Down a Big Nutrient Pollutant in Chesapeake

11.05.2012
Too much of a good thing can kill you, the saying goes.

Such is the case in the Chesapeake Bay, North America’s largest estuary, where an overabundance of nutrients fosters the formation of an oxygen-starved “dead zone” every summer. In its annual health report card last year, the bay earned only a D+.

Deb Jaisi, an assistant professor of plant and soil sciences at the University of Delaware, wants to seek out the sources of a key nutrient so excessive that it has become a pollutant in the Chesapeake Bay — phosphorus (P).

Jaisi wants to literally get to the bottom of this nutrient’s influx by analyzing the phosphorus present in a set of sediment cores extracted from the seafloor of the upper bay, middle bay and lower bay. The cores offer a glimpse into the geological and environmental record of approximately the past 75 years.

The Oak Ridge Associated Universities (ORAU), a consortium of 105 major Ph.D.-granting academic institutions, has high hopes for Jaisi’s research. Recently, Jaisi was one of 30 scientists selected nationwide to receive ORAU’s Ralph E. Powe Junior Faculty Enhancement Award. The award is intended to enrich the research and professional growth of young faculty and result in new funding opportunities.

Jaisi will receive $5,000 in seed funding from ORAU and $5,000 in matching funding from UD to launch his Chesapeake study.

According to Jaisi, phosphorus in the bay comes from three primary sources: the land, the ocean, and the buried sediments from where phosphorus is remobilized and reintroduced into the bay. However, current nutrient management efforts focus solely on reducing inputs from land.

“The contribution of these three major sources of phosphorus has varied since colonial times,” says Jaisi, who joined the UD faculty last year. “The prevailing notion that the increase in terrestrial phosphorus alone is the tipping point for the bay’s eutrophication is questionable.”

When his new state-of-the-art isotope lab is completed in UD’s College of Agriculture and Natural Resources this summer, Jaisi and his team of graduate students and postdoctoral researchers will begin using a prized new instrument called a thermo-chemical elemental analyzer (TC/EA) coupled to an isotope mass spectrometer (IRMS) to assess the presence and levels of the distinctively different forms, or isotopes, of phosphorus.

Each phosphorus source, from fertilizers used on land, to wastewater effluents, seafloor sediments, or the ocean, usually has a distinctive isotope composition or “signature” retained in the sediment cores. By comparing data from the same historical period in the sediment cores, Jaisi and his research group will be able to identify the relative contributions of different phosphorus sources over time.

“The strength of this work is that it applies the natural abundance of stable isotopes to ‘fingerprint’ the phosphorus sources for the first time in the Chesapeake Bay,” Jaisi notes. “We’ll be able to see how much phosphorus is derived from the land versus from the ocean. Over time, the analysis will reveal the real culprit in the Chesapeake Bay’s nutrient overenrichment.”

Jaisi says he hopes the work will expand knowledge of the estuary’s nutrient diet and provide information useful to resource managers in controlling phosphorus overloads. He envisions the eventual development of detailed nutrient maps of the bay, as well as the rivers that drain into it.

Originally from Nepal, home of Mount Everest, Jaisi began using isotopes to explore nutrient issues as a postdoctoral fellow at Yale University. He says the University of Delaware has provided a perfect fit for his research.

“This is an area where phosphorus is a big and hot issue,” he says. “Here, the bay and my laboratory are side by side."

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>