Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking Down a Big Nutrient Pollutant in Chesapeake

11.05.2012
Too much of a good thing can kill you, the saying goes.

Such is the case in the Chesapeake Bay, North America’s largest estuary, where an overabundance of nutrients fosters the formation of an oxygen-starved “dead zone” every summer. In its annual health report card last year, the bay earned only a D+.

Deb Jaisi, an assistant professor of plant and soil sciences at the University of Delaware, wants to seek out the sources of a key nutrient so excessive that it has become a pollutant in the Chesapeake Bay — phosphorus (P).

Jaisi wants to literally get to the bottom of this nutrient’s influx by analyzing the phosphorus present in a set of sediment cores extracted from the seafloor of the upper bay, middle bay and lower bay. The cores offer a glimpse into the geological and environmental record of approximately the past 75 years.

The Oak Ridge Associated Universities (ORAU), a consortium of 105 major Ph.D.-granting academic institutions, has high hopes for Jaisi’s research. Recently, Jaisi was one of 30 scientists selected nationwide to receive ORAU’s Ralph E. Powe Junior Faculty Enhancement Award. The award is intended to enrich the research and professional growth of young faculty and result in new funding opportunities.

Jaisi will receive $5,000 in seed funding from ORAU and $5,000 in matching funding from UD to launch his Chesapeake study.

According to Jaisi, phosphorus in the bay comes from three primary sources: the land, the ocean, and the buried sediments from where phosphorus is remobilized and reintroduced into the bay. However, current nutrient management efforts focus solely on reducing inputs from land.

“The contribution of these three major sources of phosphorus has varied since colonial times,” says Jaisi, who joined the UD faculty last year. “The prevailing notion that the increase in terrestrial phosphorus alone is the tipping point for the bay’s eutrophication is questionable.”

When his new state-of-the-art isotope lab is completed in UD’s College of Agriculture and Natural Resources this summer, Jaisi and his team of graduate students and postdoctoral researchers will begin using a prized new instrument called a thermo-chemical elemental analyzer (TC/EA) coupled to an isotope mass spectrometer (IRMS) to assess the presence and levels of the distinctively different forms, or isotopes, of phosphorus.

Each phosphorus source, from fertilizers used on land, to wastewater effluents, seafloor sediments, or the ocean, usually has a distinctive isotope composition or “signature” retained in the sediment cores. By comparing data from the same historical period in the sediment cores, Jaisi and his research group will be able to identify the relative contributions of different phosphorus sources over time.

“The strength of this work is that it applies the natural abundance of stable isotopes to ‘fingerprint’ the phosphorus sources for the first time in the Chesapeake Bay,” Jaisi notes. “We’ll be able to see how much phosphorus is derived from the land versus from the ocean. Over time, the analysis will reveal the real culprit in the Chesapeake Bay’s nutrient overenrichment.”

Jaisi says he hopes the work will expand knowledge of the estuary’s nutrient diet and provide information useful to resource managers in controlling phosphorus overloads. He envisions the eventual development of detailed nutrient maps of the bay, as well as the rivers that drain into it.

Originally from Nepal, home of Mount Everest, Jaisi began using isotopes to explore nutrient issues as a postdoctoral fellow at Yale University. He says the University of Delaware has provided a perfect fit for his research.

“This is an area where phosphorus is a big and hot issue,” he says. “Here, the bay and my laboratory are side by side."

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>