Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Less Toxic, More Efficient Dispersant is Scientist’s Goal

23.09.2010
After the failure of the Deepwater Horizon oil well last spring, nearly 2 million gallons of dispersant were released into the Gulf of Mexico to contain the spill. While preliminary reports suggest that it successfully dispersed much of the oil, the long-term effect of such a massive volume of dispersant on ecosystems, wildlife and humans remains to be seen.
That’s why a University at Buffalo researcher with expertise in how the main ingredients of dispersants -- polymers and surfactants -- interact in solutions and at surfaces is working toward designing more environmentally friendly oil dispersants, including those based on natural, mineral-based ingredients.

Marina Tsianou, PhD, assistant professor of chemical and biological engineering in the UB School of Engineering and Applied Sciences, is conducting the research under a recently awarded RAPID Response Research Grant from the National Science Foundation.

On Sept. 22, she will meet with scientists doing similar work at an NSF-sponsored “Workshop on the Science and Technology of Dispersants Relevant to Deep Sea Floor Oil Releases” in Arlington, Va.

“The purpose of our grant is to create novel dispersants through the utilization of polymers, surfactants and solvents that would be less harsh to the environment,” says Tsianou.

Her goal is to develop new dispersants through a better understanding of how they interact with crude oil and naturally occurring particles at the nanoscale level.

“There is very little published research on the fundamental interactions between crude oil and dispersant,” says Tsianou.

Tsianou notes that the scientific community was aware of the need for additional research on dispersants as far back as 2005 when the National Academy of Sciences reported that research on dispersants, especially on the molecular level, was very limited and on the decline.

“That is where our research fits in,” she says.

Tsianou and her colleagues at UB will be relying on their expertise on using macromolecules, nanoparticles and inorganic molecules as building blocks for high-end, multifunctional materials and products that ultimately improve the quality of life.

“When we study these surface interactions, we can learn how to control hydrophilicity and hydrophobicity -- their affinity, or lack of affinity, for crude oil -- as well as develop novel mechanisms to optimize their properties,” she says.

Tsianou will explore the suitability of alternative solvents and surfactants, such as those found in processed foods, for some dispersant formulations, as well as mineral particles that could serve as environmentally friendly surface active agents.

“We also will take into consideration the different compositions that oil has, depending on its origin and the time elapsed since its release,” she says. “Oil that comes from Alaska has a different composition than oil drilled from the Gulf of Mexico or the Middle East.”

She and her UB colleagues will look at how mechanical disturbances, such as those caused by hurricanes and storms, affect the way that dispersant interacts with oil.

They also will study how local environmental conditions, such as those on the Great Lakes where, she points out, smaller-scale spills also occur, might influence how dispersants function and the long-term impact they might have on local wildlife and shorelines.

“If we make a more efficient dispersant, then we can use far less of it,” she says. “Millions of gallons of anything, even a very benign material, is a lot to release into the environment.”

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB’s more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Ellen Goldbaum | Newswise Science News
Further information:
http://www.buffalo.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>