Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Total buzz kill: Metals in flowers may play role in bumblebee decline

03.04.2013
Pitt study finds that bees are at risk of ingesting toxic amounts of aluminum and nickel found in flowers growing in polluted soil

Beekeepers and researchers nationally are reporting growing evidence that a powerful new class of pesticides may be killing off bumblebees. Now, research at the University of Pittsburgh points toward another potential cause: metal pollution from aluminum and nickel.

Published in the journal Environmental Pollution, the Pitt study finds that bumblebees are at risk of ingesting toxic amounts of metals like aluminum and nickel found in flowers growing in soil that has been contaminated by exhaust from vehicles, industrial machinery, and farming equipment. The Pitt study finds that bumblebees have the ability to taste—and later ignore—certain metals such as nickel, but can do so only after they visit a contaminated flower. Therefore, the insects are exposed to toxins before they even sense the presence of metals.

"Although many metals are required by living organisms in small amounts, they can be toxic to both plants and animals when found in moderate to high concentrations," said Tia-Lynn Ashman, principal investigator of the study and professor and associate chair in Pitt's Department of Biological Sciences in the Kenneth P. Dietrich School of Arts and Sciences. "Beyond leading to mortality, these metals can interfere with insect taste perception, agility, and working memory—all necessary attributes for busy bumblebee workers."

Ashman and George Meindl, coauthor of the study and a PhD candidate in Ashman's lab, studied bumblebee behavior using the Impatiens capensis, a North American flower that blooms in summer. Its flowers are large, producing a high volume of sugar-rich nectar each day—an ideal place for bumblebees to forage. The blooms were collected from the field each morning of the two-week study and were of a similar age, color, and size.

To determine whether nickel and aluminum in the flowers' nectar influenced bumblebee behavior, Ashman and Meindl used two groups of uncontaminated flowers, one group of flowers contaminated by nickel, and another contaminated by aluminum. When a bumblebee visited a flower in an array, the entire visitation was recorded as well as the time spent (in seconds) foraging on each individual flower. This included monitoring whether the bee moved from a contaminated to a noncontaminated flower, whether the bee moved to the same group it had just sampled, or whether the bee left the flower group without visiting other individual blooms. Following each observed visit, all flowers in the array were replaced with new flowers, to ensure accurate results.

"We found that the bees still visited those flowers contaminated by metal, indicating that they can't detect metal from afar," said Ashman. "However, once bumblebees arrive at flowers and sample the nectar, they are able to discriminate against certain metals."

In the study, the bees were able to taste, discriminate against, and leave flowers containing nickel. However, this was not the case for the aluminum-treated flowers, as the bees foraged on the contaminated flowers for time periods equal to those of the noncontaminated flowers.

"It's unclear why the bees didn't sense the aluminum," said Meindl. "However, past studies show that the concentrations of aluminum found throughout blooms tend to be higher than concentrations of nickel. This suggests that the bees may be more tolerant or immune to its presence."

These results also have implications for environmentally friendly efforts to decontaminate soil, in particular a method called phytoremediation—a promising approach that involves growing metal-accumulating plants on polluted soil to remove such contaminates. Ashman says this approach should be considered with caution because the bees observed in the study foraged on metal-rich flowers. She states that further research is needed to identify plants that are ecologically safe and won't pose threats to local animals that pollinate.

The paper, "The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees" first appeared online March 6 in Environmental Pollution. Funding was provided by the Carnegie Museum of Natural History's Powdermill Nature Reserve in Rector, Pa., a Botany-In-Action Fellowship from the Phipps Botanical Garden and Conservatory in Pittsburgh, an Ivey McManus Predoctoral Fellowship to Meindl, and a National Science Foundation grant (DEB 1020523) to Ashman. The bees were observed at a nature reserve in Western Pennsylvania during August and September 2012.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>