Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Total buzz kill: Metals in flowers may play role in bumblebee decline

03.04.2013
Pitt study finds that bees are at risk of ingesting toxic amounts of aluminum and nickel found in flowers growing in polluted soil

Beekeepers and researchers nationally are reporting growing evidence that a powerful new class of pesticides may be killing off bumblebees. Now, research at the University of Pittsburgh points toward another potential cause: metal pollution from aluminum and nickel.

Published in the journal Environmental Pollution, the Pitt study finds that bumblebees are at risk of ingesting toxic amounts of metals like aluminum and nickel found in flowers growing in soil that has been contaminated by exhaust from vehicles, industrial machinery, and farming equipment. The Pitt study finds that bumblebees have the ability to taste—and later ignore—certain metals such as nickel, but can do so only after they visit a contaminated flower. Therefore, the insects are exposed to toxins before they even sense the presence of metals.

"Although many metals are required by living organisms in small amounts, they can be toxic to both plants and animals when found in moderate to high concentrations," said Tia-Lynn Ashman, principal investigator of the study and professor and associate chair in Pitt's Department of Biological Sciences in the Kenneth P. Dietrich School of Arts and Sciences. "Beyond leading to mortality, these metals can interfere with insect taste perception, agility, and working memory—all necessary attributes for busy bumblebee workers."

Ashman and George Meindl, coauthor of the study and a PhD candidate in Ashman's lab, studied bumblebee behavior using the Impatiens capensis, a North American flower that blooms in summer. Its flowers are large, producing a high volume of sugar-rich nectar each day—an ideal place for bumblebees to forage. The blooms were collected from the field each morning of the two-week study and were of a similar age, color, and size.

To determine whether nickel and aluminum in the flowers' nectar influenced bumblebee behavior, Ashman and Meindl used two groups of uncontaminated flowers, one group of flowers contaminated by nickel, and another contaminated by aluminum. When a bumblebee visited a flower in an array, the entire visitation was recorded as well as the time spent (in seconds) foraging on each individual flower. This included monitoring whether the bee moved from a contaminated to a noncontaminated flower, whether the bee moved to the same group it had just sampled, or whether the bee left the flower group without visiting other individual blooms. Following each observed visit, all flowers in the array were replaced with new flowers, to ensure accurate results.

"We found that the bees still visited those flowers contaminated by metal, indicating that they can't detect metal from afar," said Ashman. "However, once bumblebees arrive at flowers and sample the nectar, they are able to discriminate against certain metals."

In the study, the bees were able to taste, discriminate against, and leave flowers containing nickel. However, this was not the case for the aluminum-treated flowers, as the bees foraged on the contaminated flowers for time periods equal to those of the noncontaminated flowers.

"It's unclear why the bees didn't sense the aluminum," said Meindl. "However, past studies show that the concentrations of aluminum found throughout blooms tend to be higher than concentrations of nickel. This suggests that the bees may be more tolerant or immune to its presence."

These results also have implications for environmentally friendly efforts to decontaminate soil, in particular a method called phytoremediation—a promising approach that involves growing metal-accumulating plants on polluted soil to remove such contaminates. Ashman says this approach should be considered with caution because the bees observed in the study foraged on metal-rich flowers. She states that further research is needed to identify plants that are ecologically safe and won't pose threats to local animals that pollinate.

The paper, "The effects of aluminum and nickel in nectar on the foraging behavior of bumblebees" first appeared online March 6 in Environmental Pollution. Funding was provided by the Carnegie Museum of Natural History's Powdermill Nature Reserve in Rector, Pa., a Botany-In-Action Fellowship from the Phipps Botanical Garden and Conservatory in Pittsburgh, an Ivey McManus Predoctoral Fellowship to Meindl, and a National Science Foundation grant (DEB 1020523) to Ashman. The bees were observed at a nature reserve in Western Pennsylvania during August and September 2012.

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>