Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New tool debuts for measuring indoor air pollutants

17.03.2011
A promising new approach for checking the accuracy of measurements of hazardous indoor air pollutants may soon be ready for prime time, report researchers from the National Institute of Standards and Technology (NIST) and Virginia Tech.* The measurement tool, a reference sample for volatile organic compounds (VOCs), would be a boon to testers of indoor air quality and to manufacturers of paints, rugs, cleaners and other building products.

The researchers put their innovation—thin squares of plastic saturated with vapors of a common solvent—through the paces at four testing laboratories. The prototype test material, made at Virginia Tech, yielded measurement results more accurate than those previously achieved in more costly and time-consuming interlaboratory studies using less standardized materials.

The researchers suggest that their method might be used to produce a range of reference materials to validate measurements of VOCs emitted from building materials and products. VOCs are used in paints, adhesives, furniture and many other indoor products. Indoor levels of some VOCs average two to five times higher than outdoors, according to the Environmental Protection Agency.

VOC emissions from building materials and products have been linked to occupant illness, reduced worker productivity, and increased requirements for ventilation/air cleaning, leading to increased energy consumption. As a result, low VOC emitting products are being used more widely in buildings to help achieve a healthy and sustainable indoor environment.

Several programs for testing VOC emissions from building products exist, and manufacturers often test their products to determine that emissions are below limits set in regulations or voluntary standards. However, results often vary significantly.

Past evaluations of test performance have been based on how much measurements reported by individual laboratories differ from the average value for the entire set of laboratories. "These kinds of inter-laboratory comparisons can take months to conduct," explains NIST environmental engineer Cynthia Howard-Reed, lead author of the new report, "and, unfortunately, the results are relative because there is no true reference value for determining just how accurate an emission measurement really is."

That's the gap the researchers are trying to fill. They aim to produce VOC reference materials—standardized test samples that produce known results when analyzed. These benchmark references are commonly used in industry to check the accuracy of important measurement instruments.

In the initial trial, they prepared two batches of their sample material—thin films of polymethyl pentane, a plastic used in gas-permeable packaging, saturated with toluene, a common VOC found in paint and other products. A mathematical model developed by the research team is used to accurately predict rates of emission from the sample over time. The preliminary multi-laboratory tests showed that the prototype reference material is uniform in composition and sufficiently stable and that rates of VOC emissions within and between production batches are consistent.

The researchers conclude that their prototype could reduce inter-laboratory variability in results to less than 10 percent—much better than current methods.

The pilot study also identified several opportunities for improvement, which will be incorporated before an international pilot is conducted later this year. With further progress, the project will be expanded by 2013 to include more types of VOC references that will be produced in larger batches for broader distribution.

* C. Howard-Reed , Z. Liu, J. Benning , S. Cox, D. Samarov, D. Leber, A.T. Hodgson, S. Mason, D. Won and J.C. Little. Diffusion-controlled reference material for volatile organic compound emissions testing: Pilot inter-laboratory study. Building and Environment 46 (2011) 1504-1511.

Mark Bello | EurekAlert!
Further information:
http://www.nist.gov

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>