Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny invasive snail impacts Great Lakes, alters ecology

12.08.2008
Long a problem in the western U.S., the New Zealand mud snail currently inhabits four of the five Great Lakes and is spreading into rivers and tributaries, according to a Penn State team of researchers. These tiny creatures out-compete native snails and insects, but are not good fish food replacements for the native species.

"These snails have an operculum, a door that closes the shell," says Edward P. Levri, associate professor of biology at Penn State's Altoona Campus. "They can be out of the water for longer than other snails and when fed to fish, they are not digested and sometimes come out alive. This has a potential to alter the salmon and trout fisheries because they alter the food chain."

The New Zealand mud snail grows to a maximum of a quarter of an inch and is more normally a sixteenth to an eighth of an inch in length. The hard shell is capable of sealing off the soft animal from outside influences. In New Zealand, the snails reproduce asexually, resulting in identical clones, or sexually. However, in invaded areas, asexual cloning is the only mode of reproduction.

This mud snail spread to England as early as 1850 and Europe in the late 1800s. It is found in Japan, but when the snail arrived there is unknown. The first mud snail found in the U.S. was in 1987 in the Snake River, Idaho, but the species did not appear in the east until 1991 in Lake Ontario. The western and eastern U.S. populations are separate episodes of introduction, because they represent different clones; in each case, only one snail needed to be introduced to begin the invasion. The snails in the Great Lakes region appear to be the same as one clone found in Europe.

"In the western U.S., this species is of special concern largely because of their ability to modify ecosystems," Levri told attendees today (Aug. 8) at the Ecological Society of America's annual meeting in Milwaukee.

The snails in western streams alter the nitrogen and carbon cycling. They are primarily grazers and detritus eaters with very wide food preferences. In some places in streams in Yellowstone National Park, they reach population densities of 323 individuals per square inch. Levri, working with undergraduates Warren J. Jacoby, Shane J. Lunen, Ashley A. Kelly and Thomas A. Ladson, found that densities in the Great Lakes are not anywhere near that in the West.

"In our most recent survey, we were lucky if we found a few hundred per square meter," says Levri. "In Lake Erie they are not very abundant, but it is unclear what they are doing 100 feet below the surface."

In New Zealand, the mud snails are not a problem because of native trematodes -- flukes -- that infect the snails and controls their population and reproduction. Some people have suggested that those who want to control the snail introduce this trematode to the U.S. to control the snails.

"There are two problems with introducing these trematodes," says Levri. "The first is that any introduction of a nonnative species can cause worse problems than they were expected to cure. The second is that these flukes have a multiple-host life cycle, infecting ducks that are apparently not affected before infecting the snails. This might work in the west where the snails are in shallow water, but no duck is going to dive 100 feet to get snails."

Levri and his team found that in Lake Ontario, the densities of the snails peak between 50 and 82 feet and they were rarely found in water less than 16 feet.

"What we can do is limit their expansion," says Levri. "That means that recreational water users must be very careful moving from one place to another. We advise anglers to freeze waders and fishing gear, or use Formula 409 or something like that to kill the snails."

He notes that signs are beginning to mark areas in New York where the snail is found to warn people to clean their gear.

The Penn State researcher warns that the snails are difficult to control, noting "I have frozen them for 12 hours at a time and about 50 percent of them survive."

Andrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

Further reports about: carbon cycling ecosystem native snails native species trematodes

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>