Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Threats to Biodiversity Rise in the World’s Mediterranean-Climate Regions

17.02.2009
In the first systematic analysis of threats to the biodiversity of the world’s mediterranean-climate regions, scientists at The Nature Conservancy and UC Davis report that these conservation hotspots are facing significant and increasing pressure.

The study, which appears in this week’s edition of the journal Diversity and Distributions, is part of a global conservation assessment of the rare mediterranean biome.

“Throughout human history, the mild climates of mediterranean regions have fostered growth of major urban centers, vast agricultural zones and dense human populations – all in the midst of some of the rarest biodiversity on Earth”, says Dr. Rebecca Shaw, a scientist with The Nature Conservancy’s California program and the leader of the global assessment.

Mediterranean climates – characterized by warm, dry summers and cool, wet winters – are extremely rare, found on only 2% of the Earth’s land surface: portions of California/Baja California, South Africa, Australia, Chile, and the Mediterranean Basin. Increasing the pace and scale of conservation in mediterranean regions is critically important to biodiversity protection, because these regions contain 20% of the world’s plant species.

“If we are to reduce rates of biodiversity loss, then understanding patterns and trends in threats is of paramount importance,” says lead author Dr. Emma Underwood, a research scientist at the Information Center for the Environment at the University of California, Davis.

To this end, scientists from The Nature Conservancy and U. C. Davis analyzed changes in land use and population density in the world's five mediterranean-climate regions.

Overall, population density and urban areas increased in these regions by 13 percent from 1990 to 2000, while agricultural areas spread by 1 percent. Population grew by over 34 million people from 1990 to 2000, twice the population of Chile. Urban areas expanded by 2,110 square miles (5,480 square kilometers), an area about half the size of the nation of Lebanon. The greatest increase in urban area was in California, USA and Baja California, Mexico. Loss of natural habitat to agriculture was greatest in southwest Australia.

Underwood said that urban expansion is worrisome in that it is not only impacting lowlands, which have been the historic urban centers, but is spreading into intact foothills, especially those within commutable distances to major cities. For example, this trend is seen in California’s Sierra Nevada foothills and the Sierra de Guadarrama region near Madrid in Spain.

The researchers also analyzed the relationship between these threats and the number of at-risk plants and animals. For example, they found that numbers of threatened plant and mammal species increased as the size of the urban footprint and population density grew. These findings indicate the need to accelerate conservation action to outpace threats in the mediterranean biome. “This information can help support decisions about how best to invest scarce conservation resources,” says co-author Kirk Klausmeyer, a scientist with The Nature Conservancy.

The Nature Conservancy and partners have launched a Global Mediterranean Action Network to connect and tap into the collective knowledge of conservation scientists, practitioners and policy makers across the mediterranean biome, and to foster strategies to combat threats to biodiversity in all five regions.

Davina Quarterman | Wiley-Blackwell
Further information:
http://interscience.wiley.com
http://www.mediterraneanaction.net
http://ice.ucdavis.edu/

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>