Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New theory provides better basis for biodiversity conservation than existing models

A mathematical model that provides a more effective basis for biodiversity conservation than existing frameworks has been developed by a researcher at the Hebrew University of Jerusalem.

The complexity of ecological systems, expressed in the large variation in morphology, physiology and behavior of individuals of different species, individuals of the same species, or even the same individual in different environments, makes the understanding of the mechanisms affecting the diversity of ecological communities extremely difficult.

As a consequence, most theories of biodiversity are either limited to a single mechanism, or rely on highly simplified and possibly unrealistic assumptions. Thus, after more than a century of intensive research on species diversity, the world still lacks a solid, theoretical foundation that can effectively guide decision makers.

What enables different species to coexist in nature? Why do some areas, such as the tropics, host huge numbers of species, while others can accommodate only a few? How is climate change expected to affect the diversity of natural ecosystems? What level of habitat destruction can ecological communities suffer, and according to what rules should we design nature reserves?

Taking into account that preserving biological diversity (biodiversity) is crucial for the health of the environment, answering such questions is now recognized as one of the greatest challenges for the 21st century.

In his Ph.D. thesis in the Department of Evolution, Systematics and Ecology at the Hebrew University, Omri Allouche developed, under the supervision of Prof. Ronen Kadmon, a new theory of species diversity that attempts to provide a more effective basis for biodiversity conservation. The heart of the theory is a mathematical model that predicts the number of species expected in an ecological community from properties of the species (e.g., rates of birth, death, and migration) and the environment (e.g., resource availability, habitat loss, frequency of disturbances).

The generality of the model and its flexibility make it a highly effective tool for guiding conservation managers and policy makers. Interestingly, analyses of the model provide novel insights that often differ from common notions of conservationists. For example, in contrast to the intuition that improving habitat quality (e.g. by resource enrichment) should promote biodiversity, Allouche’s theory predicts that resource enrichment can actually reduce biodiversity, a result supported by empirical studies.

Another example is the response of ecological communities to habitat loss, which is recognized as the largest threat to biodiversity. Often the response of an ecosystem to mild habitat loss is used to forecast expected responses to large-scale habitat loss. The theory predicts that such forecasts may be misleading, and that ecological communities may show a sudden biodiversity collapse prior to some critical level of habitat loss.

One aspect of particular importance for conservation planning is the prediction of biodiversity responses to global climate change. Most current models of biodiversity responses to climate change make the assumption that dispersal ability of species is unlimited. In his work – which has earned him a Barenholz Prize at the Hebrew University -- Allouche shows that this assumption significantly reduces the predictive power of such models and can therefore lead to misleading conclusions.

Allouche believes that his contributions can improve the ability of conservation managers and policy makers to assess potential risks to biodiversity, to efficiently design nature reserves, to effectively identify and protect endangered species, and thus, to better conserve the diversity of ecological communities.

For further information: Jerry Barach, Dept. of Media Relations, the Hebrew University, Tel: 02-588-2904. Orit Sulitzeanu, Hebrew University spokesperson, Tel: 054-8820016.

Jerry Barach | Hebrew University of Jerusalem
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>