Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The tiniest greenhouse gas emitters

07.04.2014

Climate feedbacks from decomposition by soil microbes are one of the biggest uncertainties facing climate modelers.

A new study from the International Institute for Applied Systems Analysis (IIASA) and the University of Vienna shows that these feedbacks may be less dire than previously thought.


This is a visual representation of the model output.

Credit: Christina Kaiser: IIASA/University of Vienna

The dynamics among soil microbes allow them to work more efficiently and flexibly as they break down organic matter – spewing less carbon dioxide into the atmosphere than previously thought, according to a new study published in the journal Ecology Letters.

"Previous climate models had simply looked at soil microbes as a black box," says Christina Kaiser, lead author of the study who conducted the work as a post-doctoral researcher at IIASA. Kaiser, now an assistant professor at the University of Vienna, developed an innovative model that helps bring these microbial processes to light.

Microbes and the climate

"Soil microbes are responsible for one of the largest carbon dioxide emissions on the planet, about six times higher than from fossil fuel burning," says IIASA researcher Oskar Franklin, one of the study co-authors. These microbes release greenhouse gases such as carbon dioxide and methane into the atmosphere as they decompose organic matter. At the same time, the Earth's trees and other plants remove about the same amount of carbon dioxide from the atmosphere through photosynthesis.

As long as these two fluxes remain balanced, everything is fine.

But as the temperature warms, soil conditions change and decomposition may change. And previous models of soil decomposition suggest that nutrient imbalances such as nitrogen deficiency would lead to increased carbon emissions. "This is such a big flux that even small changes could have a large effect," says Kaiser. "The potential feedback effects are considerably high and difficult to predict."

Diversity does the trick

How exactly microorganisms in the soil and litter react to changing conditions, however, remains unclear. One reason is that soil microbes live in diverse, complex communities, where they interact with each other and rely on one another for breaking down organic matter.

"One microbe species by itself might not be able to break down a complex substrate like a dead leaf," says Kaiser. "How this system reacts to changes in the environment doesn't depend just on the individual microbes, but rather on the changes to the numbers and interactions of microbe species within the soil community."

To understand these community processes, Kaiser and colleagues developed a computer model that can simulate complex soil dynamics. The model simulates the interactions between 10,000 individual microbes within a 1mm by 1mm square. It shows how nutrients, which influence microbial metabolism, affect these interactions, and change the soil community and thereby the decomposition process.

Previous models had viewed soil decomposition as a single process, and assumed that nutrient imbalances would lead to less efficient decomposition and hence greater greenhouse gas emissions. But the new study shows that, in fact, microbial communities reorganize themselves and continue operating efficiently – emitting far less carbon dioxide than previously predicted.

"Our analyses highlight how the systems thinking for which IIASA is renowned advances insights into key ecosystem services," says study co-author and IIASA ecologist Ulf Dieckmann.

"This model is a huge step forward in our understanding of microbial decomposition, and provides us with a much clearer picture of the soil system," says University of Vienna ecologist Andreas Richter, another study co-author.

###

Reference

Kaiser C, Franklin O, Dieckmann U, and Richter A. 2014. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecology Letters. http://onlinelibrary.wiley.com/doi/10.1111/ele.12269/abstract

For more information please contact:

Christina Kaiser
University of Vienna
Department of Microbiology and Ecosystem Science
Tel: +43 (0)1 4277 76663
Mob: +43 6503773428
christina.kaiser@univie.ac.at

Oskar Franklin
Research Scholar
Ecosystems Services and Management
+43(0) 2236 807 251
franklin@iiasa.ac.at

About IIASA:

IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. http://www.iiasa.ac.at

Katherine Leitzell | EurekAlert!

Further reports about: Analysis IIASA atmosphere decomposition dioxide emissions greenhouse interactions microbe microbes species

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Energy-Efficient Building Operation: Monitoring Platform MONDAS Identifies Energy-Saving Potential

16.01.2017 | Trade Fair News

Designing Architecture with Solar Building Envelopes

16.01.2017 | Architecture and Construction

Sensory Stimuli Control Dopamine in the Brain

13.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>