Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The State of the Baltic Sea in 2013

13.05.2014

Annual assessment of the physical and chemical data finalized: Even the hurricane „Xaver“ did not end the stagnation period effecting the bottom water of the Baltic Proper.

Only a bit of a good news first: During 2013 specific meteorological conditions led to four salt water inflows bringing oxygen-rich saltwater from the North Sea across the Darss Sill into the Baltic.

The consequences in form of an increase in the salt and oxygen content of the bottom water could be detected in the western Baltic and as far as to the Bornholm Basin.

However, these events did not improve the conditions in the central part of the Baltic Sea: In the bottom water of Gotland Deep the highest concentrations of hydrogen sulfide since the beginning of the stagnation period in 2005 were measured. Simultaneously, the salinity of the deep water layers in this region of the Baltic Sea decreased.

The results of the concentrations of the nutrients nitrate and phosphate, too, cannot be classified as “good news”: the measurements in the central Baltic Sea did not confirm the decrease in nutrient concentrations observed in coastal waters.

This shows that further efforts are needed to reduce nutrient inputs into the Baltic Sea.Since several decades, the Leibniz Institute for Baltic Sea Research Warnemuende carries out regular assessments on the state of the Baltic Sea.

Each year, five cruises are conducted to measure hydrographic and chemical data on approximately 60 stations between Kiel Bight and Northern Gotland Basin. The results are summarized and published in annual assessments of the hydrographic and chemical conditions.

At the same time, these data are provided to the Helsinki Commission, which uses them for further thematic and holistic assessments of the Baltic. Thus, they serve the compliance of the demands of the EU Marine Strategy Framework Directive and the implementation of HELCOM’s the Baltic Sea Action Plan.

The complete report can be downloaded:

http://www.io-warnemuende.de/zustand-der-ostsee-2013.html
http://www.io-warnemuende.de/meereswissenschaftliche-berichte.html

Contact:

Dr. Günther Nausch, Department of Marine Chemistry, IOW
(Phone: +49 381 5197332, or guenther.nausch@io-warnemuende.de

Dr. Barbara Hentzsch, Public Relation, IOW
(Phone: +49 381 5197102 or barbara.hentzsch@io-warnemuende.de)

Nils Ehrenberg, Public Relation, IOW
(Phone: +49 381 5197106, or nils.ehrenberg@io-warnemuende.de)

The IOW is a member of the Leibniz Association to which 89 research institutes and scientific infrastructure facilities for research currently belong. The focus of the Leibniz Institutes ranges from Natural, Engineering and Environmental Science to Economic, Social, and Space Sciences and to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 17.200 people, of whom 8.200 are scientists, of which 3.300 are junior scientists. The total budget of the Institutes is more than 1.5 billion Euros. Third-party funds amount to approximately € 330 million per year.

Dr. Barbara Hentzsch | idw - Informationsdienst Wissenschaft

Further reports about: Baltic EU Environmental IOW Leibniz-Institut Marine Ostseeforschung measurements nitrate sulfide

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>