Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The oceans can’t take any more

03.07.2015

Researchers fear a fundamental change in the oceans – even if greenhouse emissions are successfully reduced

Our oceans need an immediate and substantial reduction of anthropogenic greenhouse gas emissions. If that doesn’t happen, we could see far-reaching and largely irreversible impacts on marine ecosystems, which would especially be felt in developing countries. That’s the conclusion of a new review study published today in the journal Science. In the study, the research team from the Ocean 2015 initiative assesses the latest findings on the risks that climate change poses for our oceans, and demonstrates how fundamentally marine ecosystems are likely to change if human beings continue to produce just as much greenhouse gases as before.

Since the pre-industrial era, the carbon dioxide concentration in the atmosphere has risen from 278 to 400 ppm (parts per million) – a 40 percent increase that has produced massive changes in the oceans. “To date, the oceans have essentially been the planet’s refrigerator and carbon dioxide storage locker. For instance, since the 1970s they’ve absorbed roughly 93 percent of the additional heat produced by the greenhouse effect, greatly helping to slow the warming of our planet,” explains Prof Hans-Otto Pörtner, co-author of the new Ocean 2015 study and a researcher at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research.

But the oceans have also paid a high price: as far down as 700 metres the water temperatures have risen, which has forced some species to migrate up to 400 kilometres closer to the Earth’s poles within the past decade. Given the increasing acidification in many regions, it’s becoming more and more difficult for corals and bivalves to form their calcium carbonate skeletons. In Greenland and the western Arctic, the ice is melting at an alarming rate, contributing to rising sea levels. As a result of these factors, the biological, physical and chemical processes at work in marine ecosystems are changing – which will have far-reaching consequences for marine life and humans alike.

In their new study, the research team from the Ocean 2015 initiative employs two emissions scenarios (Scenario 1: Achieving the 2-degree goal / Scenario 2: Business as usual) to compile the main findings of the IPCC’s 5th Assessment Report and the latest professional literature, and to assess those findings with regard to the risks for our oceans. “If we can successfully limit the rise in air temperature to two degrees Celsius through the year 2100, the risks, especially for warm-water corals and bivalves in low to middle latitudes, will become critical. However, the remaining risks will remain fairly moderate,” explains lead author Jean-Pierre Gattuso. But a rapid and comprehensive reduction of carbon dioxide emissions would be needed in order to achieve this ideal option, he adds.

If instead carbon dioxide emissions remain at their current level of 36 billion tonnes per year (the 2013 level), the situation will escalate dramatically. “If we just go on with business as usual, by the end of this century the changes will hit nearly every ecosystem in the oceans and cause irreparable harm for marine life,” claims Pörtner. This would in turn have massive impacts on all areas in which human beings use the oceans – whether in capture fisheries, tourism or in coastal protection.

Further, the researchers point out that with every further increase in the carbon dioxide concentration in the atmosphere, the available options for protecting, adapting and regenerating the oceans dwindle. As the authors summarise in the closing words of their study: “The ocean provides compelling arguments for rapid reductions in CO2 emissions and eventually atmospheric CO2 drawdown. Hence, any new global climate agreement that does not minimize the impacts on the ocean will be inadequate.”

The researchers’ statement above all addresses those individuals who will attend the international climate conference COP21 in Paris this December. Their study offers four key takeaway messages for the negotiators and decision-makers who will convene there:

1) The oceans greatly influence the climate system and provide important services for humans.

2) The impacts of anthropogenic climate change on key marine and coastal species can already be seen today. Many of these plant and animal species will face significant risks in the decades to come, even if we succeed in capping carbon dioxide emissions.

3) We urgently need an immediate and substantial reduction of carbon dioxide emissions in order to avoid widespread and above all irrevocable harm to ocean ecosystems and the services they provide.

4) Fourth, as atmospheric CO2 increases, the available protection, adaptation and repair options for the ocean become fewer and less effective, and with them the odds that marine life forms can successfully adapt to these rapid changes.

The Ocean 2015 initiative was launched to provide extensive information on the future of the oceans as a resource for decision-makers participating in the COP21 conference. The international research team is supported by the Prince Albert II of Monaco Foundation, the Ocean Acidification International Coordination Center of the International Atomic Energy Agency; the BNP Paribas Foundation and the Monégasque Association for Ocean Acidification.

Over the past several years, publications by researchers from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, have greatly contributed to our current state of knowledge. One of the chief questions their efforts addresses is: “How will climate change affect ecosystems in the polar regions?”

NOTES FOR EDITORS:
The review study appears in the 3 July 2015 issue of Science under the title:
J.-P. Gattuso et al: Contrasting futures for ocean and society from different anthropogenic CO2 emission scenarios, Science 3-July-2015
The full version is published online at: http://www.sciencemag.org/lookup/doi/10.1126/science.aac4722

Your academic contact partner at the AWI is Professor Hans-Otto Pörtner (E-Mail: Hans.Poertner(at)awi.de). As he is away on a business trip this week, please contact him by e-mail to request an interview.

If you have any questions, Ms Sina Löschke (tel. +49 471 4831-2008; e-mail: medien(at)awi.de) from the Department of Communications and Media Relations will be pleased to assist you.

The Alfred Wegener Institute pursues research in the Arctic, Antarctic and the oceans of the middle and high latitudes. It coordinates polar research in Germany, while also providing essential infrastructure for the international scientific community, including the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the 18 Research Centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>