Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The oceans can’t take any more

03.07.2015

Researchers fear a fundamental change in the oceans – even if greenhouse emissions are successfully reduced

Our oceans need an immediate and substantial reduction of anthropogenic greenhouse gas emissions. If that doesn’t happen, we could see far-reaching and largely irreversible impacts on marine ecosystems, which would especially be felt in developing countries. That’s the conclusion of a new review study published today in the journal Science. In the study, the research team from the Ocean 2015 initiative assesses the latest findings on the risks that climate change poses for our oceans, and demonstrates how fundamentally marine ecosystems are likely to change if human beings continue to produce just as much greenhouse gases as before.

Since the pre-industrial era, the carbon dioxide concentration in the atmosphere has risen from 278 to 400 ppm (parts per million) – a 40 percent increase that has produced massive changes in the oceans. “To date, the oceans have essentially been the planet’s refrigerator and carbon dioxide storage locker. For instance, since the 1970s they’ve absorbed roughly 93 percent of the additional heat produced by the greenhouse effect, greatly helping to slow the warming of our planet,” explains Prof Hans-Otto Pörtner, co-author of the new Ocean 2015 study and a researcher at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research.

But the oceans have also paid a high price: as far down as 700 metres the water temperatures have risen, which has forced some species to migrate up to 400 kilometres closer to the Earth’s poles within the past decade. Given the increasing acidification in many regions, it’s becoming more and more difficult for corals and bivalves to form their calcium carbonate skeletons. In Greenland and the western Arctic, the ice is melting at an alarming rate, contributing to rising sea levels. As a result of these factors, the biological, physical and chemical processes at work in marine ecosystems are changing – which will have far-reaching consequences for marine life and humans alike.

In their new study, the research team from the Ocean 2015 initiative employs two emissions scenarios (Scenario 1: Achieving the 2-degree goal / Scenario 2: Business as usual) to compile the main findings of the IPCC’s 5th Assessment Report and the latest professional literature, and to assess those findings with regard to the risks for our oceans. “If we can successfully limit the rise in air temperature to two degrees Celsius through the year 2100, the risks, especially for warm-water corals and bivalves in low to middle latitudes, will become critical. However, the remaining risks will remain fairly moderate,” explains lead author Jean-Pierre Gattuso. But a rapid and comprehensive reduction of carbon dioxide emissions would be needed in order to achieve this ideal option, he adds.

If instead carbon dioxide emissions remain at their current level of 36 billion tonnes per year (the 2013 level), the situation will escalate dramatically. “If we just go on with business as usual, by the end of this century the changes will hit nearly every ecosystem in the oceans and cause irreparable harm for marine life,” claims Pörtner. This would in turn have massive impacts on all areas in which human beings use the oceans – whether in capture fisheries, tourism or in coastal protection.

Further, the researchers point out that with every further increase in the carbon dioxide concentration in the atmosphere, the available options for protecting, adapting and regenerating the oceans dwindle. As the authors summarise in the closing words of their study: “The ocean provides compelling arguments for rapid reductions in CO2 emissions and eventually atmospheric CO2 drawdown. Hence, any new global climate agreement that does not minimize the impacts on the ocean will be inadequate.”

The researchers’ statement above all addresses those individuals who will attend the international climate conference COP21 in Paris this December. Their study offers four key takeaway messages for the negotiators and decision-makers who will convene there:

1) The oceans greatly influence the climate system and provide important services for humans.

2) The impacts of anthropogenic climate change on key marine and coastal species can already be seen today. Many of these plant and animal species will face significant risks in the decades to come, even if we succeed in capping carbon dioxide emissions.

3) We urgently need an immediate and substantial reduction of carbon dioxide emissions in order to avoid widespread and above all irrevocable harm to ocean ecosystems and the services they provide.

4) Fourth, as atmospheric CO2 increases, the available protection, adaptation and repair options for the ocean become fewer and less effective, and with them the odds that marine life forms can successfully adapt to these rapid changes.

The Ocean 2015 initiative was launched to provide extensive information on the future of the oceans as a resource for decision-makers participating in the COP21 conference. The international research team is supported by the Prince Albert II of Monaco Foundation, the Ocean Acidification International Coordination Center of the International Atomic Energy Agency; the BNP Paribas Foundation and the Monégasque Association for Ocean Acidification.

Over the past several years, publications by researchers from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, have greatly contributed to our current state of knowledge. One of the chief questions their efforts addresses is: “How will climate change affect ecosystems in the polar regions?”

NOTES FOR EDITORS:
The review study appears in the 3 July 2015 issue of Science under the title:
J.-P. Gattuso et al: Contrasting futures for ocean and society from different anthropogenic CO2 emission scenarios, Science 3-July-2015
The full version is published online at: http://www.sciencemag.org/lookup/doi/10.1126/science.aac4722

Your academic contact partner at the AWI is Professor Hans-Otto Pörtner (E-Mail: Hans.Poertner(at)awi.de). As he is away on a business trip this week, please contact him by e-mail to request an interview.

If you have any questions, Ms Sina Löschke (tel. +49 471 4831-2008; e-mail: medien(at)awi.de) from the Department of Communications and Media Relations will be pleased to assist you.

The Alfred Wegener Institute pursues research in the Arctic, Antarctic and the oceans of the middle and high latitudes. It coordinates polar research in Germany, while also providing essential infrastructure for the international scientific community, including the research icebreaker Polarstern and stations in the Arctic and Antarctic. The Alfred Wegener Institute is one of the 18 Research Centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft
Further information:
http://www.awi.de/

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>