Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Temperature constancy appears key to tropical biodiversity

New paper answers longstanding scientific question about cause of tropics' stunning biodiversity

The tropics owe their stunning biodiversity to consistent year-round temperatures, not higher temperatures or more sunlight, according to a novel survey of insect diversity at different latitudes and at different points in the planet's history.

The finding, presented this week in the journal Paleobiology by researchers from Harvard University, Simon Fraser University, and Brandon University, may finally answer a question that has dogged scientists for centuries.

It also suggests, intriguingly, that the world is likely far less diverse today than it was tens of millions of years ago, when the entire Earth had consistent year-round temperatures, much like the modern tropics.

"The latitudinal diversity gradient has been recognized for 150 years as one of the most general observations in nature, and has produced more explanatory hypotheses than nearly any other observation," says co-author Brian D. Farrell, professor of biology at Harvard. "We show that when most of today's organisms were diversifying, up through the Eocene, the world lacked pronounced seasonality, more like today's tropics, even in areas where the temperature was low."

"It appears it's not the heat of the tropics that promotes diversity; it's the newer seasons of the temperate zone that depress diversity."

Scientists' explanations for tropical biodiversity have tended to focus on the greater heat and light found closer to the equator, and to a lesser extent the low seasonality of the tropics, where average temperature in the hottest and coolest months may vary by only a few degrees.

"These factors tend to change together as you travel away from the equator toward the poles, leaving it difficult to separate their individual effects on diversity," says lead author S. Bruce Archibald, a research associate at Simon Fraser University, Harvard's Museum of Comparative Zoology, and the Royal British Columbia Museum. Archibald conducted the research for his doctoral dissertation at Harvard, where Farrell was his advisor.

Farrell, Archibald, and colleagues engaged in a kind of time travel, invoking the fossil record to solve this conundrum. They compared modern insect diversity at the Harvard Forest in Petersham, Mass., and in a Costa Rican jungle against that seen at the 52.9-million-year-old McAbee fossil bed in British Columbia, noted for its exceptionally well preserved insects. At the time the McAbee fossils were created, Earth's climate was far less seasonal at all latitudes, allowing tropical species such as palm trees and crocodiles to live in what is now the high Arctic.

The scientists' discovery that the ancient Canadian site's insect diversity mirrors that of the modern Costa Rican jungle, despite a marked difference in latitude, suggests that it's seasonality, not heat or light, that drives biodiversity.

"Planet Earth and life have coevolved for well over a billion years, and this is yet additional evidence of the consequent intertwining of global physical and biological phenomena," Farrell says.

Farrell and Archibald's co-authors on the Paleobiology paper are William H. Bossert of Harvard's School of Engineering and Applied Sciences and David R. Greenwood of Brandon University. The work was funded by the Natural Sciences and Engineering Research Council of Canada, Harvard's Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, and the Maurice Pechet Foundation.

Steve Bradt | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>