Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telecoupling pulls pieces of sustainability puzzle together

26.06.2013
Global sustainability is like a high-stakes jigsaw puzzle – and an international group of scientists have created a new framework to assemble the big picture without losing pieces.
Scientists led by Jianguo “Jack” Liu, Michigan State University’s Rachel Carson Chair in Sustainability, have built an integrated way to study a world that has become more connected – with faster and more socioeconomic and environmental interactions over distances. They say “telecoupling” describes how distance is shrinking and connections are strengthening between nature and humans.

In the new issue of Ecology and Society, Liu, director of MSU’s Center for Systems Integration and Sustainability (CSIS), and his colleagues lay the groundwork to understand how an action on one side of the world has enormous socioeconomic and environmental consequences thousands of miles away – and how it doesn’t stop there. Telecoupling shows how environmental and socioeconomic actions lead to reactions and feedbacks – and then to more repercussions that reverberate globally.

For a world struggling to balance the needs of people and the environment in the face of critical challenges like climate change, food security, water security, energy security, environmental pollution, poverty, biodiversity loss and species invasion, Liu says an integrated framework of telecoupling is essential.

“It has been traditional to focus on either the socioeconomic or environmental impact of an action,” Liu said. “But the lack of a holistic understanding of an action means that you really cannot manage a system well for both socioeconomic and environmental sustainability.

The article “Framing Sustainability in a Telecoupled World” lays out a comprehensive telecoupling framework – a map for the trip to sustainable development across the world.

The authors use the trading of soybeans as an example of the far-reaching complexities that result.

Soybeans are a booming commodity in China – used for food, vegetable oil and animal feed. The telecoupling framework uses five components (systems, agents, flows, causes, and effects) critical to assembling the whole picture.

Systems are where humans and nature interact. Explosive growth and increasing urbanity has sent the Chinese shopping elsewhere for soybeans. Brazil has stepped up to the plate to meet the demands and has suffered environmental consequences as delicate rainforests are converted to farmland. China, on the other hand, has been converting farmlands back to forests.

The telecoupling framework tracks how one change leads to another and can spill over into other countries. For example, the United States found itself losing market share in soybeans, leading to economic repercussions and environmental changes as farmers shifted gears.

Flows are the materials, information and energy that pass back and forth between systems. China and Brazil have trade agreements, financial transactions and the use of fuel and water to grow and transport the beans.

The telecoupling framework also factors in the actions of agents – the individuals, decision-make groups, or even herds of animals -- whose actions have an impact, big and small, what they do in China can resonate in Brazil and visa versa -- or somewhere in between.

Then there are causes and effects – supply, demand and the cultural tastes that drive demand are among many causes. Effects can be the impact of insecticides and fertilizers used to grow the beans in Brazil or displacement of farmers in China who no longer grow soybeans due to the lower price of soybeans from Brazil.

Besides soybean trade, telecouplings may emerge through other types of trade, and other distant interactions such as foreign investment, tourism, transnational land tenure transfer, knowledge dissemination, technology transfer, migration of humans and animals, water transfer, waste transfer, pollutant transfer, atmospheric circulation, and species invasion.

The point, Liu said, is that everything everywhere needs to be factored in.

“This is a big step to figure out how to quantify everything everywhere, but it’s important,” Liu said. “The telecoupling framework not only allows us to understand socioeconomic and environmental sustainability in one place, but it enables us to evaluate sustainability in all relevant places simultaneously.

“It provides a useful foundation to protect our environment while allowing people to thrive globally.”

Joining Liu in writing the article is Vanessa Hull, Thomas Dietz, Shuxin Li, William McConnell, Emilio Moran and Cynthia Simmons, all from MSU; Mateus Batistella from Brazil’s EMBRAPA; Ruth DeFries of Columbia University; Feng Fu and Karen Polenske of MIT; Thomas Hertel of Purdue University; Roberto Izaurralde of the Joint Global Change Research Institute; Eric Lambin, Rosamond Naylor and Peter Vitousek of Stanford; Luiz Martinelli of the University of São Paulo, Brazil; Zhiyun Ouyang of the Chinese Academy of Sciences; Anette Reenberg of the University of Copenhagen; Gilberto Rocha of Federal University of Pará, Brazil; Peter Verburg of VU University of Amsterdam; Fusuo Zhang of China Agricultural University and Chunquan Zhu of International Union for Conservation of Nature in China.

The work was funded by the National Science Foundation, U.S. Department of Energy, Michigan State University, and Michigan AgBioResearch.
Contact:
Sue Nichols
(517) 432-0206, nichols@msu.edu

Sue Nichols | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>