Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Telecoupling pulls pieces of sustainability puzzle together

26.06.2013
Global sustainability is like a high-stakes jigsaw puzzle – and an international group of scientists have created a new framework to assemble the big picture without losing pieces.
Scientists led by Jianguo “Jack” Liu, Michigan State University’s Rachel Carson Chair in Sustainability, have built an integrated way to study a world that has become more connected – with faster and more socioeconomic and environmental interactions over distances. They say “telecoupling” describes how distance is shrinking and connections are strengthening between nature and humans.

In the new issue of Ecology and Society, Liu, director of MSU’s Center for Systems Integration and Sustainability (CSIS), and his colleagues lay the groundwork to understand how an action on one side of the world has enormous socioeconomic and environmental consequences thousands of miles away – and how it doesn’t stop there. Telecoupling shows how environmental and socioeconomic actions lead to reactions and feedbacks – and then to more repercussions that reverberate globally.

For a world struggling to balance the needs of people and the environment in the face of critical challenges like climate change, food security, water security, energy security, environmental pollution, poverty, biodiversity loss and species invasion, Liu says an integrated framework of telecoupling is essential.

“It has been traditional to focus on either the socioeconomic or environmental impact of an action,” Liu said. “But the lack of a holistic understanding of an action means that you really cannot manage a system well for both socioeconomic and environmental sustainability.

The article “Framing Sustainability in a Telecoupled World” lays out a comprehensive telecoupling framework – a map for the trip to sustainable development across the world.

The authors use the trading of soybeans as an example of the far-reaching complexities that result.

Soybeans are a booming commodity in China – used for food, vegetable oil and animal feed. The telecoupling framework uses five components (systems, agents, flows, causes, and effects) critical to assembling the whole picture.

Systems are where humans and nature interact. Explosive growth and increasing urbanity has sent the Chinese shopping elsewhere for soybeans. Brazil has stepped up to the plate to meet the demands and has suffered environmental consequences as delicate rainforests are converted to farmland. China, on the other hand, has been converting farmlands back to forests.

The telecoupling framework tracks how one change leads to another and can spill over into other countries. For example, the United States found itself losing market share in soybeans, leading to economic repercussions and environmental changes as farmers shifted gears.

Flows are the materials, information and energy that pass back and forth between systems. China and Brazil have trade agreements, financial transactions and the use of fuel and water to grow and transport the beans.

The telecoupling framework also factors in the actions of agents – the individuals, decision-make groups, or even herds of animals -- whose actions have an impact, big and small, what they do in China can resonate in Brazil and visa versa -- or somewhere in between.

Then there are causes and effects – supply, demand and the cultural tastes that drive demand are among many causes. Effects can be the impact of insecticides and fertilizers used to grow the beans in Brazil or displacement of farmers in China who no longer grow soybeans due to the lower price of soybeans from Brazil.

Besides soybean trade, telecouplings may emerge through other types of trade, and other distant interactions such as foreign investment, tourism, transnational land tenure transfer, knowledge dissemination, technology transfer, migration of humans and animals, water transfer, waste transfer, pollutant transfer, atmospheric circulation, and species invasion.

The point, Liu said, is that everything everywhere needs to be factored in.

“This is a big step to figure out how to quantify everything everywhere, but it’s important,” Liu said. “The telecoupling framework not only allows us to understand socioeconomic and environmental sustainability in one place, but it enables us to evaluate sustainability in all relevant places simultaneously.

“It provides a useful foundation to protect our environment while allowing people to thrive globally.”

Joining Liu in writing the article is Vanessa Hull, Thomas Dietz, Shuxin Li, William McConnell, Emilio Moran and Cynthia Simmons, all from MSU; Mateus Batistella from Brazil’s EMBRAPA; Ruth DeFries of Columbia University; Feng Fu and Karen Polenske of MIT; Thomas Hertel of Purdue University; Roberto Izaurralde of the Joint Global Change Research Institute; Eric Lambin, Rosamond Naylor and Peter Vitousek of Stanford; Luiz Martinelli of the University of São Paulo, Brazil; Zhiyun Ouyang of the Chinese Academy of Sciences; Anette Reenberg of the University of Copenhagen; Gilberto Rocha of Federal University of Pará, Brazil; Peter Verburg of VU University of Amsterdam; Fusuo Zhang of China Agricultural University and Chunquan Zhu of International Union for Conservation of Nature in China.

The work was funded by the National Science Foundation, U.S. Department of Energy, Michigan State University, and Michigan AgBioResearch.
Contact:
Sue Nichols
(517) 432-0206, nichols@msu.edu

Sue Nichols | EurekAlert!
Further information:
http://www.msu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>