Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technique helps biologists save the world’s threatened seagrass meadows

Danish and Australian biologists have developed a technique to determine if seagrass contain sulfur.

If the seagrass contains sulfur, it is an indication that the seabed is stressed and that the water environment is threatened. The technique will help biologists all over the world in their effort to save the world’s seagrass meadows.

Seagrass meadows, such as eelgrass or Halophila, grow along most of the world's coasts where they provide important habitats for a wide variety of life forms. However in many places seagrass meadows have been lost or seriously diminished and in their effort to reestablish the meadows biologists can now benefit from a new technique that reveals the health of seagrass.

"It cannot always be seen by the naked eye if a seagrass plant is thriving or not. Therefore, it is necessary to develop methods that reveal the health state of the plant and what causes the failure to thrive. Now we have such a technique”, says professor Marianne Holmer from the Department of Biology at the University of Southern Denmark. For many years she has studied the ecology and biogeochemistry of seagrass in temperate and tropical ecosystems.

Seagrass meadows grow along many coasts in the world except where harsh winds, waves and currents are too turbulent for rooted plants to remain attached to the seabed. The meadows are not only a home for a variety of small and large animals; the leaves also help to dampen the waves and the roots help to hold the sediments of the seabed. The plants also act as particle filters that keep the water clear, and they also store carbon and nutrients.

According to Marianne Holmer, biologists today have good knowledge of how light and water quality affect seagrasses, while it is more complicated to understand how sediment conditions affect seagrasses. Together with her colleague Kieryn Kilminster from the Department of Water in Western Australia, she has now developed a technique that can detect whether the sediment conditions are a problem for the seagrasses.

"We take a small piece of plant tissue from a seagrass and bring it back to the lab. Here we analyze it in a so-called mass spectrometer, and this shows us if the plant tissue contains sulfur. If we find sulfur in the plant tissue, it means that the plant has absorbed sulfide from the seabed, and this means that the seabed is not a healthy environment for the seagrass”, explains Marianne Holmer.

The sulfide in the seabed is formed by the so-called sulfate-reducing bacteria. They appear, when oxygen disappears from the seabed – this can happen when the seabed is fed large amounts of organic material from algal blooms or from plankton that blooms, when nutrients are released from agricultural farming. The supply of nutrients and particles can also come from cleared coastland. When vegetation is cleared from the coastland, soil and particles are freed and flow into the water. This is a problem in e.g. Australia, where cities are growing rapidly along the coasts.

"A seagrass, which has absorbed sulfide, shows reduced growth and may die-off", explains Marianne Holmer.

When seagrasses absorb nutrients, the nutrients are bound in the plant as it grows. Seagrasses have a relatively long life cycle and nutrients will be bound for a relatively long time compared to being bound in shorter lived seaweed and plankton. If seagrasses are inhibited in growth or disappear from coastlands, bays and fjords, the nutrients become available to other, more short lived plants, and this can lead to increased growth of algae and plankton.

"Many countries are working to restore the lost meadows of seagrasses, and in this work it is important to understand when and why the plants do not thrive. With our new technology, we are now better at this”, says Marianne Holmer.

Facts about seagrass
Seagrass is not seaweed, but a plant with flowers, leaves and roots just like plants on land. Seagrass also produces seeds that can be sown in the seabed and grow to new plants. There are approx. 60 seagrass species in the world with eelgrass (Zostera marina) in temperate areas and Halophila ovalis in tropical and subtropical areas as common species. Seagrass needs light and only grows where at least 10% of the sun's light can reach the plants.

Ref: Development of a ‘sediment-stress’ functional-level indicator for the seagrass Halophila ovalis, Ecological Indicators, Volume 36, January 2014, Pages 280–289

Photo shows researchers collecting seagrass tissue (credit Kieryn Kilminster).

The University of Southern Denmark is a partner and coordinator of NOVA GRASS, an international five-year research project focused on the restoration of eelgrass meadows. Read more about nova grass here:

This article was written by press officer Birgitte Svennevig.

Birgitte Svennevig | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>