Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique helps biologists save the world’s threatened seagrass meadows

01.10.2013
Danish and Australian biologists have developed a technique to determine if seagrass contain sulfur.

If the seagrass contains sulfur, it is an indication that the seabed is stressed and that the water environment is threatened. The technique will help biologists all over the world in their effort to save the world’s seagrass meadows.



Seagrass meadows, such as eelgrass or Halophila, grow along most of the world's coasts where they provide important habitats for a wide variety of life forms. However in many places seagrass meadows have been lost or seriously diminished and in their effort to reestablish the meadows biologists can now benefit from a new technique that reveals the health of seagrass.

"It cannot always be seen by the naked eye if a seagrass plant is thriving or not. Therefore, it is necessary to develop methods that reveal the health state of the plant and what causes the failure to thrive. Now we have such a technique”, says professor Marianne Holmer from the Department of Biology at the University of Southern Denmark. For many years she has studied the ecology and biogeochemistry of seagrass in temperate and tropical ecosystems.

Seagrass meadows grow along many coasts in the world except where harsh winds, waves and currents are too turbulent for rooted plants to remain attached to the seabed. The meadows are not only a home for a variety of small and large animals; the leaves also help to dampen the waves and the roots help to hold the sediments of the seabed. The plants also act as particle filters that keep the water clear, and they also store carbon and nutrients.

According to Marianne Holmer, biologists today have good knowledge of how light and water quality affect seagrasses, while it is more complicated to understand how sediment conditions affect seagrasses. Together with her colleague Kieryn Kilminster from the Department of Water in Western Australia, she has now developed a technique that can detect whether the sediment conditions are a problem for the seagrasses.

"We take a small piece of plant tissue from a seagrass and bring it back to the lab. Here we analyze it in a so-called mass spectrometer, and this shows us if the plant tissue contains sulfur. If we find sulfur in the plant tissue, it means that the plant has absorbed sulfide from the seabed, and this means that the seabed is not a healthy environment for the seagrass”, explains Marianne Holmer.

The sulfide in the seabed is formed by the so-called sulfate-reducing bacteria. They appear, when oxygen disappears from the seabed – this can happen when the seabed is fed large amounts of organic material from algal blooms or from plankton that blooms, when nutrients are released from agricultural farming. The supply of nutrients and particles can also come from cleared coastland. When vegetation is cleared from the coastland, soil and particles are freed and flow into the water. This is a problem in e.g. Australia, where cities are growing rapidly along the coasts.

"A seagrass, which has absorbed sulfide, shows reduced growth and may die-off", explains Marianne Holmer.

When seagrasses absorb nutrients, the nutrients are bound in the plant as it grows. Seagrasses have a relatively long life cycle and nutrients will be bound for a relatively long time compared to being bound in shorter lived seaweed and plankton. If seagrasses are inhibited in growth or disappear from coastlands, bays and fjords, the nutrients become available to other, more short lived plants, and this can lead to increased growth of algae and plankton.

"Many countries are working to restore the lost meadows of seagrasses, and in this work it is important to understand when and why the plants do not thrive. With our new technology, we are now better at this”, says Marianne Holmer.

Facts about seagrass
Seagrass is not seaweed, but a plant with flowers, leaves and roots just like plants on land. Seagrass also produces seeds that can be sown in the seabed and grow to new plants. There are approx. 60 seagrass species in the world with eelgrass (Zostera marina) in temperate areas and Halophila ovalis in tropical and subtropical areas as common species. Seagrass needs light and only grows where at least 10% of the sun's light can reach the plants.

Ref: Development of a ‘sediment-stress’ functional-level indicator for the seagrass Halophila ovalis, Ecological Indicators, Volume 36, January 2014, Pages 280–289

Photo shows researchers collecting seagrass tissue (credit Kieryn Kilminster).

The University of Southern Denmark is a partner and coordinator of NOVA GRASS, an international five-year research project focused on the restoration of eelgrass meadows. Read more about nova grass here: http://www.novagrass.dk/

This article was written by press officer Birgitte Svennevig.

Birgitte Svennevig | EurekAlert!
Further information:
http://www.sdu.dk

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>