Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tackle fungal forces to save crops, forests and endangered animals, say scientists

More than 600 million people could be fed each year by halting the spread of fungal diseases in the world's five most important crops, according to research published today in the journal Nature.

Furthermore, data reviewed by scientists suggests that in 70% of cases where infectious disease causes the extinction of a type of animal or plant, an emerging species of fungus is behind the problem. Evidence suggests this figure is increasing.

The scientists behind the study, from the University of Oxford, Imperial College London, and institutions in the US, are calling for new solutions to prevent the proliferation of existing and emerging fungal infections in plants and animals in order to prevent further loss of biodiversity and food shortages in the future.

Fungal infections presently destroy at least 125 million tonnes of the top five food crops - rice, wheat, maize, potatoes and soybeans - each year, which could otherwise be used to feed those who do not get enough to eat. These crops provide the majority of calories consumed by people.

The damage caused by fungi to rice, wheat and maize alone costs global agriculture $60 billion per year. The effects are disproportionately catastrophic for those in the developing world, where 1.4 billion people live on less than $1.25 per day, and rely most heavily on these low-cost foods.

Diseases like rice blast, soybean rust, stem rust in wheat, corn smut in maize and late blight in potatoes affect more than just productivity; many have wide ranging socio-economic costs. Trees lost or damaged by fungi fail to absorb 230-580 megatonnes of atmospheric CO2, equivalent to 0.07% of global atmospheric CO2, an effect the scientists say is likely to be leading to an increase of the greenhouse effect.

In animals, new fungal diseases increasingly threaten the existence of over 500 species of amphibian, as well as many endangered species of bees, sea turtles and corals. In the US alone, studies suggest the decline in bat populations caused by white nose syndrome fungus will lead to a dramatic rise in the insect crop-pests that the bats would otherwise eat, and a cost to agriculture of more than $3.7 billion per year.

Dr Matthew Fisher, from the School of Public Health at Imperial College London, and a corresponding author of the study, said: "The alarming increase in plant and animal deaths caused by new types of fungal disease shows that we are rapidly heading towards a world where the 'rotters' are the winners. We need strive to prevent the emergence of new diseases as we currently lack the means to successfully treat outbreaks of infection in the wild."

The article shows how instances of fungal diseases have been increasing in severity and scale since the middle of the 20th century, largely thanks to trade and travel, and now pose a serious danger to global food security, biodiversity and ecosystem health. The threat to plants from fungal infections has now reached a level that outstrips that posed by bacterial and viral diseases combined and is projected to continue rising.

The authors calculated that fungal infection could damage of up to 900 million tonnes of food if disease epidemics were to hit all the top five food crops in the same year. Although the chances of this happening are very slight, they estimate that this scenario would cause a global famine leaving over 4.2 billion people starving.

They are calling for tighter control of trade in plant and animal products that facilitate the spread of disease, and more research into tools that can predict emerging fungal infections so scientists can learn to halt the spread of existing diseases that are currently geographically isolated.

Corresponding author, Sarah Gurr, Professor of Molecular Plant Pathology at the University of Oxford, said: "Crop losses due to fungal attack challenge food security and threaten biodiversity, yet we are woefully inadequate at controlling their emergence and proliferation. We must have better funding channelled into the fight against fungal disease."

This work was supported by the BBSRC, NERC, Wellcome Trust, Leverhume Trust,, and the ERA-net project BiodivERsA, as well as the National Science foundation and the National Institutes of Health in the US.

For further information please contact:

Sam Wong
Research Media Officer
Imperial College London
Tel: +44(0)20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248
Notes to editors
1. Journal reference:
MC Fisher et al. "Emerging fungal threats to animal, plant and ecosystem health." Nature, 12 April 2012. DOI 10.1038/nature10947
2. About Wellcome Trust

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. It supports the brightest minds in biomedical research and the medical humanities. The Trust's breadth of support includes public engagement, education and the application of research to improve health. It is independent of both political and commercial interests.


3. About Imperial College London

Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.

Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.

In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.




Sam Wong | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>