Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New system to restore wetlands could reduce massive floods, aid crops

28.03.2013
Engineers at Oregon State University have developed a new interactive planning tool to create networks of small wetlands in Midwest farmlands, which could help the region prevent massive spring floods and also retain water and mitigate droughts in a warming climate.
The planning approach, which is being developed and tested in a crop-dominated watershed near Indianapolis, is designed to identify the small areas best suited to wetland development, optimize their location and size, and restore a significant portion of the region’s historic water storage ability by using only a small fraction of its land.

Using this approach, the researchers found they could capture the runoff from 29 percent of a watershed using only 1.5 percent of the entire area.

The findings were published in Ecological Engineering, a professional journal, and a website is now available at http://wrestore.iupui.edu/ that allows users to apply the principles to their own land.

The need for new approaches to assist farmers and agencies to work together and use science-based methods is becoming critical, experts say. Massive floods and summer droughts have become more common and intense in the Midwest because of climate change and decades of land management that drains water rapidly into rivers via tile drains.

“The lands of the Midwest, which is one of the great food producing areas of the world, now bear little resemblance to their historic form, which included millions of acres of small lakes and wetlands that have now been drained,” said Meghna Babbar-Sebens, an assistant professor of civil and construction engineering at Oregon State. “Agriculture, deforestation, urbanization and residential development have all played a role.

“We have to find some way to retain and slowly release water, both to use it for crops and to prevent flooding,” Babbar-Sebens said. “There’s a place for dams and reservoirs but they won’t solve everything. With increases in runoff, what was once thought to be a 100-year flood event is now happening more often.

“Historically, wetlands in Indiana and other Midwestern states were great at intercepting large runoff events and slowing down the flows,” she said. “But Indiana has lost more than 85 percent of the wetlands it had prior to European settlement.”

An equally critical problem is what appears to be increasing frequency of summer drought, she said, which may offer a solid motivation for the region’s farmers to become involved. The problem is not just catastrophic downstream flooding in the spring, but also the loss of water and soil moisture in the summer that can be desperately needed in dry years.

The solution to both issues, scientists say, is to “re-naturalize” the hydrology of a large section of the United States. Working toward this goal was a research team from Oregon State University, Indiana University-Purdue University in Indianapolis, the Wetlands Institute in New Jersey, and the U.S. Environmental Protection Agency. They used engineering principles, historic analysis and computer simulations to optimize the effectiveness of any land use changes, so that minimal land use alteration would offer farmers and landowners a maximum of benefits.

In the Midwest, many farmers growing corn, soybeans and other crops have placed “tiles” under their fields to rapidly drain water into streams, which dries the soil and allows for earlier planting. Unfortunately, it also concentrates pollutants, increases flooding and leaves the land drier during the summer. Without adequate rain, complete crop losses can occur.

Experts have also identified alternate ways to help, including the use of winter cover crops and grass waterways that help retain and more slowly release water. And the new computer systems can identify the best places for all of these approaches to be used.

The work has been supported by the Indiana State Department of Agriculture and the National Science Foundation.

Media Contact:
David Stauth

Source:
Meghna Babbar-Sebens, 541-737-8536

Meghna Babbar-Sebens | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>