Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surviving Harsh Environments Becomes a Death-Trap for Specialist Corals

21.05.2015

The success of corals that adapt to survive in the world’s hottest sea could contribute to their demise through global warming, according to new research.


Professor Jörg Wiedenmann

Corals and their symbiotic algae in the Arabian Gulf are adapted to survive extreme temperature and salinity level

Researchers from the University of Southampton and the New York University Abu Dhabi found that local adaptation to high salinity levels in the southern Persian/Arabian Gulf (PAG) may prevent coral escaping their fate, as they lose their superior heat tolerance in waters with normal salinity levels.

The research is published this week in The ISME Journal, a world leading publication platform for ecological research, from where it can be freely accessed via http://www.nature.com/ismej/journal/vaop/ncurrent/full/ismej201580a.html

Warm water corals depend on a vital partnership with unicellular algae of the genus Symbiodinium. Damage to the algal symbiont through heat stress can result in the breakdown of the association, leading to fatal coral bleaching. Most corals fall victim to bleaching at water temperatures above 32ºC. However, corals from the PAG region survive summer peak temperatures of up to 35ºC on a regular basis.

Senior author of the study, Professor Jörg Wiedenmann from Ocean and Earth Science at the University of Southampton, explains: “It was not clear whether this resilience is related to the presence of a new type of symbiotic alga (Symbiodinium thermophilum) that was recently discovered by our team in this region. Therefore, we used molecular markers to identify the algal partners of three coral species along the coast of the southern Gulf and the adjacent Gulf of Oman. We found that this special symbiont indeed seems to play an integral role for coral survival in the world’s hottest sea.”

The researchers studied corals along 1,000km of coastline in the southern PAG, a region where the world’s warmest coral reef habitats are separated from the wider Indian Ocean by the narrow Strait of Hormuz. Notably, the PAG features not only record temperatures, but the water is also exceptionally salty.

Professor Wiedenmann, who runs the University’s Coral Reef Laboratory based at the National Oceanography Centre Southampton, continues: “As soon as you leave the Gulf, corals start to host different symbionts. This ‘partner exchange’ starts when the salinity of the water approaches normal oceanic levels.”

Lead-author Dr Cecilia D’Angelo, Senior Research Fellow at the University of Southampton, says: “We have simulated these conditions in our laboratory and found that corals from the Gulf lose their exceptional heat stress tolerance when they need to cope at the same time with salinity levels commonly found in coral reefs elsewhere. This may explain why the PAG-typical coral-alga associations are rarely found in the less salty water or the Gulf of Oman.”

Dr D’Angelo adds: “Some corals may potentially escape their fate in waters heated by global warming by shifting their geographic distribution. However, our findings indicate that in addition to barriers such as landmasses, the lack of suitable substrate for settlement and adverse currents, the dependence on certain local environmental conditions may represent an invisible fence that could trap corals in their endangered habitat.”

With rising ocean temperatures anticipated to cause a loss of most warm water reefs within the next 100 years, it has been discussed whether heat tolerant corals adapted to hot environments, such as PAG, could be used to replenish reefs damaged by global warming elsewhere.

Professor Wiedenmann comments: “Our results suggest that the transplantation of corals over large geographic distances is not a straight-forward solution to restore reefs since they may struggle to adjust to different environmental factors apart from the temperature in the new habitat. Efforts to protect coral reefs should rather focus on other measures including the reduction of nutrient enrichment, sedimentation, overfishing and destructive coastal development. At the same time all attempts should be made to reduce CO2 emissions to prevent further global warming.”

References:
Cecilia D’Angelo, Benjamin C.C. Hume, John Burt, Edward G. Smith, Eric P. Achterberg and Jörg Wiedenmann (2015). Local adaptation constrains the distribution potential of heat-tolerant Symbiodinium from the Persian/Arabian Gulf. The ISME Journal, DOI 10.1038/ismej.2015.80
Free download: http://www.nature.com/ismej/journal/vaop/ncurrent/full/ismej201580a.html

Hume, B.C.C. et al. Symbiodinium thermophilum sp. nov., a thermotolerant symbiotic alga prevalent in corals of the world’s hottest sea, the Persian/Arabian Gulf. Sci. Rep. 5, 8562; DOI:10.1038/srep08562 (2015).
Free download: http://www.nature.com/srep/2015/150224/srep08562/full/srep08562.html

D’Angelo, C. and Wiedenmann, J. "Impacts of Nutrient Enrichment on Coral Reefs: New Perspectives and Implications for Coastal Management and Reef Survival." Current Opinion in Environmental Sustainability 7, (2014): 82-93.
Free download: http://www.sciencedirect.com/science/article/pii/S1877343513001917

Contact Information
Glenn Harris
Media Relations Officer
G.Harris@soton.ac.uk
Phone: +44 23 8059 3212

Glenn Harris | newswise

Further reports about: Arabian Persian Symbiodinium alga coral reefs corals global warming levels salinity symbiont temperatures

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>