Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Survey identifies sea turtle 'hitchhikers'

09.11.2011
"It is strange to think of a sea turtle as an ecosystem," says Amanda Feuerstein, program coordinator and research assistant at the Smithsonian's National Museum of Natural History, "but they are…they have all of these other animals living on their skin and shells."

Feuerstein is co-author of a recent survey documenting the crustaceans, mollusks, algae and other marine organisms that make a home on the bodies Olive Ridley and green sea turtles living in the Pacific.

For three years -- 2001, 2002 and 2008 -- on Teopa Beach in Jalisco, Mexico, Feuerstein and colleagues examined the shell, neck and flippers of female turtles that had come out onto the beach to nest, collecting and carefully documenting all the organisms -- known as epibionts -- they found. It is the first comprehensive survey on Pacific turtle epibionts, and was recently published in the Bulletin of the Peabody Museum of Natural History. The survey was organized by the Turtle Epibiont Project of the Yale Peabody Museum of Natural History.

Sixteen different epibiont species were found on the turtles, Feuerstein says, including crabs, a variety of barnacles, the remora or "shark sucker," and leeches. Most of the Pacific sea turtle epibionts are obligate -- meaning they are found only on sea turtles, nowhere else.

Compared to turtles living in the Atlantic, "the Pacific turtles are coming up pretty darn clean," says Eric Lazo-Wasme of the Peabody Museum of Natural History, lead author of the study. Similar surveys of Atlantic Ocean turtles have recorded as many as 90 epibiont species living on them. The scientists are uncertain why Pacific turtles have fewer epibionts.

"For years we considered epibionts as harmless hitchhikers on the turtles, but that opinion is starting to change," Lazo-Wasem explains. "Barnacles in large numbers can cause significant drag on a turtle as it swims and some barnacles embed into the skin and have very long projections that pierce laterally into the skin." Leeches have also been shown to transmit disease.

The impetus for the survey was born out of conservation concern for sea turtles as an endangered species. Coevolutionary relationships between turtles and their epibionts, and how these relationships affect turtle health and ecology have only recently come under scrutiny, the researchers say.

The study includes photographs of and taxonomic commentary on each of the epibiont species documented and survey instructions for future studies on how to collect epibionts from sea turtles.

"We wanted to make the paper one that people could really use," Lazo-Wasem says. "We weren't really pleased with past surveys because there was not a lot of detail in them."

"When we endanger animals like sea turtles many other groups of animals are affected," Feuerstein says. "Loosing one species is more complicated and tragic" than people may realize.

"Epibionts Associated with the Nesting Marine Turtles Lepidochelys olivacea and Chelonia mydas in Jalisco, Mexico: A Review and Field Guide," appeared in the Bulletin of the Peabody Museum of Natural History and was co-authored by Eric Lazo-Wasem, Amanda Feuerstein, Theodora Pinou of Western Connecticut State University and Alejandro Pena de Niz, of the Centro Para La Proteccion y Conservacion de Tortugas Marinas.

John Gibbons | EurekAlert!
Further information:
http://www.si.edu

More articles from Ecology, The Environment and Conservation:

nachricht Minimized water consumption in CSP plants - EU project MinWaterCSP is making good progress
05.12.2017 | Steinbeis-Europa-Zentrum

nachricht Jena Experiment: Loss of species destroys ecosystems
28.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>