Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight in tropical forest driving force behind ecological niches of tree species

28.11.2011
Not water, but sunlight is the main factor in determining the growth of the hundreds of tree species in tropical forests.

The variation in physiological characteristics between tree species explains how the various species fit into their ecological niches, thereby contributing to diversity in tropical forests. This is the conclusion drawn by researchers from Wageningen University, part of Wageningen UR, and their colleagues from Utrecht University in a publication in the scientific journal PNAS.

Tropical forests are able to sustain hundreds of tree species on just a few hectares, but little is known about how this diversity has evolved. A study carried out by Frank Sterck, Lourens Poorter and Lars Markesteijn (Wageningen University) and Feike Schieving (Utrecht University) shows that the species examined all responded differently to variations in the availability of light and water because they had different physiological characteristics. Most of the species occupied a unique niche where they do better than the other species, which may contribute to the co-existence of these species and the diversity of the forest.

As part of the study, the researchers measured a range of physiological properties such as leaf surface area, wood density, photosynthesis capacity, leaf water potentials and resistance to water transport in tropical tree species from a Bolivian forest. They used a physiological plant model to calculate the speed at which the various species can grow when exposed to different combinations of water and light. The simulations show that variations in leaf production and photosynthesis capacity enable species to specialise for a variety of light niches. The sensitivity of stoma to drought in the various species (and therefore the water consumption) also varies, but this does not lead to trees becoming specialised for dry or moist locations in the same forest.

The researchers conclude that even in relatively dry tropical forests, light is the driving force behind niche specialisation in tree types. This makes sunlight more important than water in terms of whether different trees grow side-by-side or not.

This is one of the first studies for which physiological plant models have been used to scale up plant characteristics to the growth and survival of various tree species in order to explain the wealth of species in a tropical forest. In future, these models will also be used to look into the distribution of plant species along climate gradients.

http://www.wageningenuniversity.nl/UK/newsagenda/news/P093eForesttrees_.htm

Jac Niessen | alfa
Further information:
http://www.wur.nl

Further reports about: ecological niche leaf production sunlight tree species tropical forest

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>