Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight in tropical forest driving force behind ecological niches of tree species

28.11.2011
Not water, but sunlight is the main factor in determining the growth of the hundreds of tree species in tropical forests.

The variation in physiological characteristics between tree species explains how the various species fit into their ecological niches, thereby contributing to diversity in tropical forests. This is the conclusion drawn by researchers from Wageningen University, part of Wageningen UR, and their colleagues from Utrecht University in a publication in the scientific journal PNAS.

Tropical forests are able to sustain hundreds of tree species on just a few hectares, but little is known about how this diversity has evolved. A study carried out by Frank Sterck, Lourens Poorter and Lars Markesteijn (Wageningen University) and Feike Schieving (Utrecht University) shows that the species examined all responded differently to variations in the availability of light and water because they had different physiological characteristics. Most of the species occupied a unique niche where they do better than the other species, which may contribute to the co-existence of these species and the diversity of the forest.

As part of the study, the researchers measured a range of physiological properties such as leaf surface area, wood density, photosynthesis capacity, leaf water potentials and resistance to water transport in tropical tree species from a Bolivian forest. They used a physiological plant model to calculate the speed at which the various species can grow when exposed to different combinations of water and light. The simulations show that variations in leaf production and photosynthesis capacity enable species to specialise for a variety of light niches. The sensitivity of stoma to drought in the various species (and therefore the water consumption) also varies, but this does not lead to trees becoming specialised for dry or moist locations in the same forest.

The researchers conclude that even in relatively dry tropical forests, light is the driving force behind niche specialisation in tree types. This makes sunlight more important than water in terms of whether different trees grow side-by-side or not.

This is one of the first studies for which physiological plant models have been used to scale up plant characteristics to the growth and survival of various tree species in order to explain the wealth of species in a tropical forest. In future, these models will also be used to look into the distribution of plant species along climate gradients.

http://www.wageningenuniversity.nl/UK/newsagenda/news/P093eForesttrees_.htm

Jac Niessen | alfa
Further information:
http://www.wur.nl

Further reports about: ecological niche leaf production sunlight tree species tropical forest

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>