Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sunlight in tropical forest driving force behind ecological niches of tree species

28.11.2011
Not water, but sunlight is the main factor in determining the growth of the hundreds of tree species in tropical forests.

The variation in physiological characteristics between tree species explains how the various species fit into their ecological niches, thereby contributing to diversity in tropical forests. This is the conclusion drawn by researchers from Wageningen University, part of Wageningen UR, and their colleagues from Utrecht University in a publication in the scientific journal PNAS.

Tropical forests are able to sustain hundreds of tree species on just a few hectares, but little is known about how this diversity has evolved. A study carried out by Frank Sterck, Lourens Poorter and Lars Markesteijn (Wageningen University) and Feike Schieving (Utrecht University) shows that the species examined all responded differently to variations in the availability of light and water because they had different physiological characteristics. Most of the species occupied a unique niche where they do better than the other species, which may contribute to the co-existence of these species and the diversity of the forest.

As part of the study, the researchers measured a range of physiological properties such as leaf surface area, wood density, photosynthesis capacity, leaf water potentials and resistance to water transport in tropical tree species from a Bolivian forest. They used a physiological plant model to calculate the speed at which the various species can grow when exposed to different combinations of water and light. The simulations show that variations in leaf production and photosynthesis capacity enable species to specialise for a variety of light niches. The sensitivity of stoma to drought in the various species (and therefore the water consumption) also varies, but this does not lead to trees becoming specialised for dry or moist locations in the same forest.

The researchers conclude that even in relatively dry tropical forests, light is the driving force behind niche specialisation in tree types. This makes sunlight more important than water in terms of whether different trees grow side-by-side or not.

This is one of the first studies for which physiological plant models have been used to scale up plant characteristics to the growth and survival of various tree species in order to explain the wealth of species in a tropical forest. In future, these models will also be used to look into the distribution of plant species along climate gradients.

http://www.wageningenuniversity.nl/UK/newsagenda/news/P093eForesttrees_.htm

Jac Niessen | alfa
Further information:
http://www.wur.nl

Further reports about: ecological niche leaf production sunlight tree species tropical forest

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>