Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugarcane cools climate

18.04.2011
Brazilians are world leaders in using biofuels for gasoline.

About a quarter of their automobile fuel consumption comes from sugarcane, which significantly reduces carbon dioxide emissions that otherwise would be emitted from using gasoline. Now scientists from the Carnegie Institution's Department of Global Ecology have found that sugarcane has a double benefit. Expansion of the crop in areas previously occupied by other Brazilian crops cools the local climate.

It does so by reflecting sunlight back into space and by lowering the temperature of the surrounding air as the plants "exhale" cooler water. The study is published in the 2nd issue of Nature Climate Change, posted on-line April 17.

The research team,* led by Carnegie's Scott Loarie, is the first to quantify the direct effects on the climate from sugarcane expansion in areas of existing crop and pastureland of the cerrado, in central Brazil.

The researchers used data from hundreds of satellite images over 733,000 square miles—an area larger than the state of Alaska. They measured temperature, reflectivity (also called albedo), and evapotranspiration—the water loss from the soil and from plants as they exhale water vapor.

As Loarie explained: "We found that shifting from natural vegetation to crops or pasture results in local warming because the plants give off less beneficial water. But the bamboo-like sugarcane is more reflective and gives off more water—much like the natural vegetation. It's a potential win-win for the climate—using sugarcane to power vehicles reduces carbon emissions, while growing it lowers the local air temperature."

The scientists found that converting from natural vegetation to crop/pasture on average warmed the cerrado by 2.79 °F (1.55 °C), but that subsequent conversion to sugarcane, on average, cooled the surrounding air by 1.67 °F (0.93°C).

The researchers emphasize that the beneficial effects are contingent on the fact sugarcane is grown on areas previously occupied by crops or pastureland, and not in areas converted from natural vegetation. It is also important that other crops and pastureland do not move to natural vegetation areas, which would contribute to deforestation.

So far most of the thinking about ecosystem effects on climate considers only impacts from greenhouse gas emissions. But according to coauthor Greg Asner, "It's becoming increasingly clear that direct climate effects on local climate from land-use decisions constitute significant impacts that need to be considered core elements of human-caused climate change."

*Co-authors on the study are David Lobell of the Program for Food Security and the Environment at Stanford University, Gregory Asner and Christopher Field of Carnegie's Department of Global Ecology, and Qiaozhen Mu of the University of Montana. The work was made possible through the support of the Stanford University Global Climate and Energy Project.

The Department of Global Ecology was established in 2002 to help build the scientific foundations for a sustainable future. The department is located on the campus of Stanford University, but is an independent research organization funded by the Carnegie Institution. Its scientists conduct basic research on a wide range of large-scale environmental issues, including climate change, ocean acidification, biological invasions, and changes in biodiversity.

The Carnegie Institution for Science (www.carnegieScience.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Scott Loarie | EurekAlert!
Further information:
http://www.carnegieScience.edu

More articles from Ecology, The Environment and Conservation:

nachricht Calculating recharge of groundwater more precisely
28.02.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>