Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sudden collapse in ancient biodiversity: Was global warming the culprit?

Scientists discover early warning signs of ecosystems at risk

Scientists have unearthed striking evidence for a sudden ancient collapse in plant biodiversity. A trove of 200 million-year-old fossil leaves collected in East Greenland tells the story, carrying its message across time to us today.

Results of the research appear in this week's issue of the journal Science.

The researchers were surprised to find that a likely candidate responsible for the loss of plant life was a small rise in the greenhouse gas carbon dioxide, which caused Earth's temperature to rise.

Global warming has long been considered as the culprit for extinctions--the surprise is that much less carbon dioxide gas in the atmosphere may be needed to drive an ecosystem beyond its tipping point than previously thought.

"Earth's deep time climate history reveals startling discoveries that shake the foundations of our knowledge and understanding of climate change in modern times," says H. Richard Lane, program director in the National Science Foundation (NSF)'s Division of Earth Sciences, which partially funded the research.

Jennifer McElwain of University College Dublin, the paper's lead author, cautions that sulfur dioxide from extensive volcanic emissions may also have played a role in driving the plant extinctions.

"We have no current way of detecting changes in sulfur dioxide in the past, so it's difficult to evaluate whether sulfur dioxide, in addition to a rise in carbon dioxide, influenced this pattern of extinction," says McElwain.

The time interval under study, at the boundary of the Triassic and Jurassic periods, has long been known for its plant and animal extinctions.

Until this research, the pace of the extinctions was thought to have been gradual, taking place over millions of years.

It has been notoriously difficult to tease out details about the pace of extinction using fossils, scientists say, because fossils can provide only snap-shots or glimpses of organisms that once lived.

Using a technique developed by scientist Peter Wagner of the Smithsonian Institution National Museum of Natural History in Washington, D.C., the researchers were able to detect, for the first time, very early signs that these ancient ecosystems were already deteriorating--before plants started going extinct.

The method reveals early warning signs that an ecosystem is in trouble in terms of extinction risk.

"The differences in species abundances for the first 20 meters of the cliffs [in East Greenland] from which the fossils were collected," says Wagner, "are of the sort you expect. "But the final 10 meters show dramatic loses of diversity that far exceed what we can attribute to sampling error: the ecosystems were supporting fewer and fewer species."

By the year 2100, it's expected that the level of carbon dioxide in the modern atmosphere may reach as high as two and a half times today's level.

"This is of course a 'worst case scenario,'" says McElwain. "But it's at exactly this level [900 parts per million] at which we detected the ancient biodiversity crash.

"We must take heed of the early warning signs of deterioration in modern ecosystems. We've learned from the past that high levels of species extinctions--as high as 80 percent--can occur very suddenly, but they are preceded by long interval of ecological change."

The majority of modern ecosystems have not yet reached their tipping point in response to climate change, the scientists say, but many have already entered a period of prolonged ecological change.

"The early warning signs of deterioration are blindingly obvious," says McElwain. "The biggest threats to maintaining current levels of biodiversity are land use change such as deforestation. "But even relatively small changes in carbon dioxide and global temperature can have unexpectedly severe consequences for the health of ecosystems."

The paper, "Fossil Plant Relative Abundances Indicate Sudden Loss of Late Triassic Biodiversity in East Greenland," was co-authored by McElwain, Wagner and Stephen Hesselbo of the University of Oxford in the U.K.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Development and Fast Analysis of 3D Printed HF Components

19.03.2018 | Trade Fair News

In monogamous species, a compatible partner is more important than an ornamented one

19.03.2018 | Life Sciences

Signaling Pathways to the Nucleus

19.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>