Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Submarine springs offer preview of ocean acidification effects on coral reefs

29.11.2011
Observations at submarine springs found along the coast of Mexico's Yucatan Peninsula are giving scientists a preview of the possible fate of coral reef ecosystems in response to ocean acidification.

The naturally low pH (a measure of acidity) in the water around the springs creates conditions similar to those that will result from the widespread acidification of surface waters that scientists expect to occur as the oceans absorb increasing amounts of carbon dioxide from the atmosphere.

Ecological surveys around the springs found small, patchily distributed colonies of only a few species of corals, without the structurally complex corals that compose the framework of the nearby Mesoamerican Barrier Reef, one of the Caribbean's largest coral reef ecosystems.

A team led by scientists at the University of California, Santa Cruz, has been studying the submarine springs at Puerto Morelos near the Mesoamerican reef for the past three years. The researchers reported their findings in a paper published in the journal Coral Reefs (published online Nov. 20).

"This study has some good news and some bad news for corals," said coauthor Adina Paytan, a research professor in the Institute of Marine Sciences at UC Santa Cruz. "The good news is that some species of corals are able to calcify and grow at very low pH. The bad news is that these are not the ones that build the framework of the coral reefs. So if this is an indication of what will happen with future ocean acidification, the reefs will not be as we know them today."

The submarine springs, known as "ojos," occur along the eastern coast of the Yucatan Peninsula. Limestone "karst" landforms near the coast feature underground drainage systems that discharge brackish water at the ojos. The discharged water has lower pH than the surrounding seawater, and these conditions have existed for thousands of years. Lowering the pH affects the chemical equilibrium of seawater with respect to calcium carbonate, reducing the concentration of carbonate ions and making it harder for organisms such as corals to build and maintain structures of calcium carbonate.

Paytan's team monitored the pH and other conditions at ten ojos and conducted ecological surveys around each site. The researchers found that the number of coral species and the size of coral colonies declined with increasing proximity to the center of an ojo. Only a few species of hard corals were found in waters with the lowest carbonate saturation levels, closest to the ojos. These species are rarely major contributors to the framework of Caribbean reefs, but their ability to form carbonate skeletons in low-pH conditions warrants further study, Paytan said.

"We need to understand the mechanisms that allow these corals to calcify at these low-pH conditions. We should also make sure that the places where these species occur are protected," she said.

The low pH and low carbonate saturation near the ojos are comparable to the conditions scientists expect to see worldwide due to ocean acidification by the year 2100. Other conditions at the ojos are different, however, including somewhat lower salinity and high nutrient concentrations in the discharge water. Evidence from previous studies suggests that the low salinity is not responsible for the patterns seen around the ojos, since coral species that tolerate similarly low salinity occur in the region but were not found near the ojos. The high nutrient concentrations may benefit the corals, helping them compensate for the increased energy needed for calcification under low-pH conditions.

Elizabeth Crook, a graduate student in Earth and planetary sciences at UC Santa Cruz, is first author of the Coral Reefs paper. In addition to Crook and Paytan, the coauthors include Donald Potts, professor of ecology and evolutionary biology at UCSC, and Mario Rebolledo-Vieyra and Laura Hernández at the Centro de Investigación Científica de Yucatán. This research was funded by the National Science Foundation.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>