Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Submarine springs offer preview of ocean acidification effects on coral reefs

Observations at submarine springs found along the coast of Mexico's Yucatan Peninsula are giving scientists a preview of the possible fate of coral reef ecosystems in response to ocean acidification.

The naturally low pH (a measure of acidity) in the water around the springs creates conditions similar to those that will result from the widespread acidification of surface waters that scientists expect to occur as the oceans absorb increasing amounts of carbon dioxide from the atmosphere.

Ecological surveys around the springs found small, patchily distributed colonies of only a few species of corals, without the structurally complex corals that compose the framework of the nearby Mesoamerican Barrier Reef, one of the Caribbean's largest coral reef ecosystems.

A team led by scientists at the University of California, Santa Cruz, has been studying the submarine springs at Puerto Morelos near the Mesoamerican reef for the past three years. The researchers reported their findings in a paper published in the journal Coral Reefs (published online Nov. 20).

"This study has some good news and some bad news for corals," said coauthor Adina Paytan, a research professor in the Institute of Marine Sciences at UC Santa Cruz. "The good news is that some species of corals are able to calcify and grow at very low pH. The bad news is that these are not the ones that build the framework of the coral reefs. So if this is an indication of what will happen with future ocean acidification, the reefs will not be as we know them today."

The submarine springs, known as "ojos," occur along the eastern coast of the Yucatan Peninsula. Limestone "karst" landforms near the coast feature underground drainage systems that discharge brackish water at the ojos. The discharged water has lower pH than the surrounding seawater, and these conditions have existed for thousands of years. Lowering the pH affects the chemical equilibrium of seawater with respect to calcium carbonate, reducing the concentration of carbonate ions and making it harder for organisms such as corals to build and maintain structures of calcium carbonate.

Paytan's team monitored the pH and other conditions at ten ojos and conducted ecological surveys around each site. The researchers found that the number of coral species and the size of coral colonies declined with increasing proximity to the center of an ojo. Only a few species of hard corals were found in waters with the lowest carbonate saturation levels, closest to the ojos. These species are rarely major contributors to the framework of Caribbean reefs, but their ability to form carbonate skeletons in low-pH conditions warrants further study, Paytan said.

"We need to understand the mechanisms that allow these corals to calcify at these low-pH conditions. We should also make sure that the places where these species occur are protected," she said.

The low pH and low carbonate saturation near the ojos are comparable to the conditions scientists expect to see worldwide due to ocean acidification by the year 2100. Other conditions at the ojos are different, however, including somewhat lower salinity and high nutrient concentrations in the discharge water. Evidence from previous studies suggests that the low salinity is not responsible for the patterns seen around the ojos, since coral species that tolerate similarly low salinity occur in the region but were not found near the ojos. The high nutrient concentrations may benefit the corals, helping them compensate for the increased energy needed for calcification under low-pH conditions.

Elizabeth Crook, a graduate student in Earth and planetary sciences at UC Santa Cruz, is first author of the Coral Reefs paper. In addition to Crook and Paytan, the coauthors include Donald Potts, professor of ecology and evolutionary biology at UCSC, and Mario Rebolledo-Vieyra and Laura Hernández at the Centro de Investigación Científica de Yucatán. This research was funded by the National Science Foundation.

Tim Stephens | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>