Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Even at sublethal levels, pesticides may slow the recovery of wild salmon populations

18.12.2009
Exposure to common pesticides may hinder the growth and survival of ESA-listed salmon

Biologists determined that short-term, seasonal exposure to pesticides in rivers and basins may limit the growth and size of wild salmon populations. In addition to the widespread deterioration of salmon habitats, these findings suggest that exposure to commonly used pesticides may further inhibit the recovery of threatened or endangered populations.

"Major efforts are currently underway to restore Pacific salmon habitats in an effort to recover depressed populations," says David Baldwin of the National Oceanic and Atmospheric Administration (NOAA), who co-authored the study with NOAA colleagues in the December issue of the ESA journal Ecological Applications. "However, not much research has been done to determine the importance of pollution as a limiting factor of ESA-listed species."

The researchers studied the impact of pesticides, such as diazinon and malathion, on individual salmon using pre-existing data, and then devised a model to calculate the productivity and growth rate of the population. They used several exposure scenarios to reflect realistic pesticide use across various landscapes and over time.

Pesticides include insecticides, herbicides and fungicides that are usually applied to agricultural and urban landscapes. They primarily enter waterways in spray drift, surface runoff and irrigation return flows.

"An important aim of the work was to link known sublethal effects for individual salmon to impacts on the productivity of salmon populations," explains Baldwin.

The biologists found in previous studies that, on an individual level, the pesticides directly affected the activity of acetylcholinesterase, an important enzyme in the salmon brain. As a result, the salmon experienced reductions in feeding behavior. The reductions in food were then extended using the model to calculate reductions in the growth, size, and subsequent survival at ocean migration. In one scenario, the model predicted that, within a span of 20 years, returning spawners would have an increase of 68 percent abundance compared to a 523 percent projected increase in an unexposed chinook population.

"The model showed that a pesticide exposure lasting only four days can change the freshwater growth and, by extension, the subsequent survival of subyearling animals," says Baldwin. "In addition, the seasonal transport of pesticides to salmon habitats over successive years might slow the recovery of depressed populations."

The researchers argue that improving water quality conditions by reducing common pollutants could potentially increase the rate of recovery. Looking to the bigger picture, "This should help resource managers consider pesticides at the same biological scale as physical and biological stressors when prioritizing habitat restoration activities," says Baldwin.

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>