Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SU research team uses nanobiotechnology-manipulated light particles to accelerate algae growth

25.08.2010
Scientists and engineers seek to meet three goals in the production of biofuels from non-edible sources such as microalgae: efficiency, economical production and ecological sustainability. Syracuse University’s Radhakrishna Sureshkumar, professor and chair of biomedical and chemical engineering in the L.C. Smith College of Engineering and Computer Science, and SU chemical engineering Ph.D. student Satvik Wani have uncovered a process that is a promising step toward accomplishing these three goals.

Sureshkumar and Wani have discovered a method to make algae, which can be used in the production of biofuels, grow faster by manipulating light particles through the use of nanobiotechnology. By creating accelerated photosynthesis, algae will grow faster with minimal change in the ecological resources required. This method is highlighted in the August 2010 issue of Nature Magazine.

The SU team has developed a new bioreactor that can enhance algae growth. They accomplished this by utilizing nanoparticles that selectively scatter blue light, promoting algae metabolism. When the optimal combination of light and confined nanoparticle suspension configuration was used, the team was able to achieve growth enhancement of an algae sample of greater than 30 percent as compared to a control.

“Algae produce triglycerides, which consist of fatty acids and glycerin. The fatty acids can be turned into biodiesel while the glycerin is a valuable byproduct,” says Sureshkumar. “Molecular biologists are actively seeking ways to engineer optimal algae strains for biofuel production. Enhancing the phototropic growth rate of such optimal organisms translates to increased productivity in harvesting the feedstock.”

The process involved the creation of a miniature bioreactor that consisted of a petri dish of a strain of green algae (Chlamydomonas reinhardtii) on top of another dish containing a suspension of silver nanoparticles that served to backscatter blue light into the algae culture. Through model-guided experimentation, the team discovered that by varying the concentration and size of the nanoparticle solution they could manipulate the intensity and frequency of the light source, thereby achieving an optimal wavelength for algal growth.

“Implementation of easily tunable wavelength specific backscattering on larger scales still remains a challenge, but its realization will have a substantial impact on the efficient harvesting of phototrophic microorganisms and reducing parasitic growth,” says Sureshkumar. “Devices that can convert light not utilized by the algae into the useful blue spectral regime can also be envisioned.”

To date, this is one of the first explorations into utilizing nanobiotechnology to promote microalgal growth. The acceleration in the growth rate of algae also had numerous benefits outside the area of biofuel production. Sureshkumar and Wani will be looking to employ this discovery to further their research in creating environmental sensors for ecological warning systems.

Ariel DuChene | EurekAlert!
Further information:
http://www.syr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>