Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SU biologist develops method for monitoring shipping noise in dolphin habitat

03.12.2013
Nathan Merchant is exploring the link between man-made noise and marine mammal populations

A biologist in Syracuse University's College of Arts and Sciences has developed a system of techniques for tracking ships and monitoring underwater noise levels in a protected marine mammal habitat. The techniques are the subject of a groundbreaking article in Marine Pollution Bulletin, focusing on the bottlenose dolphin population in Scotland's Moray Firth.

Nathan Merchant, a postdoctoral researcher in the Department of Biology, co-authored the article with Enrico Pirotta, Tim Barton, and Paul Thompson, of The Institute of Biological and Environmental Sciences at the University of Aberdeen (U.K.).

"Underwater noise levels have been increasing over recent decades, due to escalations in human activity," says Merchant, referring to shipping, pile-driving, and seismic surveys. "These changes in the acoustic environment affect marine mammals because they rely on sound as their primary sensory mode. The disturbance caused by this man-made noise can disrupt crucial activities like hunting for food and communication, affecting the fitness of individual animals."

He adds: "Right now, the million-dollar question is: Does this disturbance lead to changes in population levels of marine mammals? That's what these long-term studies are ultimately trying to find out."

The study focuses on the Moray Firth, the country's largest inlet and home to a population of bottlenose dolphins and various types of seals, porpoises, and whales. This protected habitat also houses construction yards that feed Scotland's ever-expanding offshore wind sector. Projected increases in wind farm construction are expected to bring more shipping through the habitat—something scientists think could negatively impact on resident marine mammals.

"Different ships emit noise at different levels and frequencies, so it's important to know which types of vessels are crossing the habitats and migration routes of marine mammals," says Merchant, who is based in the research lab of Professor Susan Parks, a specialist in the ecology and evolution of acoustic signaling. "The cumulative effect of many noisy ship passages can raise the physiological stress-level of marine mammals and affect foraging behavior."

Due to a lack of reliable baseline data, Merchant and his collaborators at Aberdeen have figured out how to monitor underwater noise levels, using ship-tracking data and shore-based time-lapse photography. These techniques form a ship-noise assessment toolkit, which Merchant says may be used to study noise from shipping in other habitats.

Parks, for one, is excited about Merchant's accomplishments. "Nathan has been a great addition to our lab," she says. "His strengths in signal processing and noise measurements for ship noise have expanded our capabilities. … Underwater noise is a global problem, as major shipping routes connect all of the economies of the world."

Located in SU's Life Sciences Complex, the Department of Biology offers graduate and undergraduate programs in cell biology, development, neuroscience, ecology, evolution, pre-medical education, and environmental science.

Suggested links:

http://www.sciencedirect.com/science/article/pii/S0025326X13006802
http://www.bath.ac.uk/news/2013/11/26/ocean-noise/

Rob Enslin | EurekAlert!
Further information:
http://www.syr.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>