Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Suggests Low-Dose Arsenic Compromises Immune Response to Influenza A

22.05.2009
A research article published online May 20 ahead of print in the peer-reviewed journal Environmental Health Perspectives (EHP) suggests that low-dose exposure to arsenic in drinking water may significantly alter components of the immune system and cause a number of changes in the body’s response to respiratory infection caused by influenza A, also known as H1N1.

First author Courtney D. Kozul and colleagues reported that mice exposed to 100 parts per billion (ppb) of arsenic in drinking water had altered immune responses, higher viral titers and more severe symptoms in response to influenza A infection compared with infected mice that were not exposed to arsenic.

“In this study, we show that chronic low-dose arsenic exposure can profoundly alter the response to influenza A (H1N1) infection [in mice],” wrote Kozul and colleagues. “Understanding the role of arsenic in response to such viral challenges [in humans] will be important in the overall assessment of the public health risk.”

Flu is a major cause of morbidity and mortality worldwide. An estimated 5-15% of the global population will contract influenza annually, resulting in over 3-5 million hospitalizations and 250,000-500,000 deaths.

Worldwide, millions of people drink water containing arsenic at levels above the U.S. EPA’s guideline of 10 ppb. In certain areas in the U.S. West, Midwest, Southwest and Northeast, people drinking contaminated well water may be exposed to arsenic levels ranging from 50 to 90 ppb or even higher. In some Asian countries, levels may exceed 3,000 ppb.

Alterations in response to repeated lung infection such as those observed by Kozul and colleagues may also contribute to other chronic illnesses, such as bronchiectasis, which is elevated by arsenic exposure in epidemiologic studies. Chronic exposure to arsenic has been associated with many diseases, including lung, liver, skin, kidney and bladder cancer; cardiovascular disease; diabetes; and reproductive and developmental defects.

“With the current concern about the H1N1/influenza A virus and the potential effect of H1N1 spreading in areas where arsenic exposure is common, this study is both extremely timely and highly relevant,” said EHP editor-in-chief Hugh A. Tilson, PhD. “It is expected that the effects of arsenic exposure on the immune response to viral infection are complex, and therefore it is likely that several mechanisms are contributing to the adverse outcomes observed in the arsenic-exposed mice.”

Other authors of this paper included Kenneth H. Ely, Richard I. Enelow and Joshua W. Hamilton. This work was funded by the Superfund Basic Research Program of the National Institute of Environmental Health Sciences (NIEHS)/National Institutes of Health.

The article is available free of charge at http://www.ehponline.org/docs/2009/0900911/abstract.html

EHP is published by the NIEHS, part of the U.S. Department of Health and Human Services. EHP is an Open Access journal. More information is available online at http://www.ehponline.org/. Brogan & Partners Convergence Marketing handles marketing and public relations for the publication and is responsible for creation and distribution of this press release.

Julie Hayworth-Perman | Newswise Science News
Further information:
http://www.ehponline.org/

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>