Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows reforestation in Lower Mississippi Valley reduces sediment

03.12.2013
Study Shows Reforestation along Rivers and Streams in Lower Mississippi Alluvial Valley Reduces Sediment Runoff

A modeling study by U.S. Forest Service researchers shows that reforesting the Lower Mississippi Alluvial Valley can significantly reduce runoff from agricultural lands and the amount of sediment entering the area’s rivers and streams—and ultimately the Gulf of Mexico. The journal Ecological Engineering recently published the results of the study by Forest Service Southern Research Station scientists Ying Ouyang, Ted Leininger, and Matt Moran.

The Lower Mississippi Alluvial Valley, located in the historic floodplain of the Mississippi River, stretches from Cairo, Illinois south to the Gulf of Mexico. One of the largest coastal and river basins in the world, the area is also one of the most affected by floods, erosion, and sediment deposition as a result of more than a century of converting bottomland hardwood forests to agricultural lands.

Sediments from frequently flooded agricultural lands often carry pesticides and fertilizers, the latter associated with the formation of the hypoxic (low oxygen) dead zone in the Gulf of Mexico. Forest buffers reduce runoff and sediment load from flooded agricultural lands; in the Lower Mississippi Alluvial Valley, the frequently flooded agricultural land in the batture (land that lies between a river and its levees, pronounced batch-er) seems a prime site to start reforestation efforts.

The U.S. Endowment for Forestry and Communities (the Endowment) commissioned the study, and co-funded it with Forest Service State and Private Forestry. “This study provides further evidence of the key role forests play in flood control and in reducing sediment flow from agricultural lands into our watersheds,” notes Carlton Owen, president and CEO of the Endowment. “The new forest areas would also provide regional economic and environmental benefits by not only improving water quality but also wildlife habitat and recreational opportunities.”

The researchers chose two Lower Mississippi River Alluvial Valley watersheds—the large Lower Yazoo River Watershed and the smaller Peters Creek Watershed—to model the effects of reforestation in or near the battures on water outflow and sediment load (the amount of solid material carried by a river or stream). They performed two simulations, the first to predict water outflow and sediment load without reforestation, the second to project over 10 years the potential impacts of converting different levels—25, 50, 75, and 100 percent—of the land to forest in or near the battures.

“Comparing simulation results with and without reforestation showed that converting agricultural lands close to streams into forests would greatly lessen water outflow and reduce the effects of sediment load as far as the Gulf of Mexico,” says Ouyang, lead author of the article and research hydrologist at the SRS Center for Bottomland Hardwoods Research. “In general, the larger the area converted, the greater the effect. For the Lower Yazoo River watershed, a two-fold increase in forest land area would result in approximately a two-fold reduction in the annual volume of water outflow and the mass of sediment load moving into the river.”

Ying Ouyang | EurekAlert!
Further information:
http://www.fs.fed.us
http://www.srs.fs.usda.gov/pubs/45134

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>