Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows reforestation in Lower Mississippi Valley reduces sediment

03.12.2013
Study Shows Reforestation along Rivers and Streams in Lower Mississippi Alluvial Valley Reduces Sediment Runoff

A modeling study by U.S. Forest Service researchers shows that reforesting the Lower Mississippi Alluvial Valley can significantly reduce runoff from agricultural lands and the amount of sediment entering the area’s rivers and streams—and ultimately the Gulf of Mexico. The journal Ecological Engineering recently published the results of the study by Forest Service Southern Research Station scientists Ying Ouyang, Ted Leininger, and Matt Moran.

The Lower Mississippi Alluvial Valley, located in the historic floodplain of the Mississippi River, stretches from Cairo, Illinois south to the Gulf of Mexico. One of the largest coastal and river basins in the world, the area is also one of the most affected by floods, erosion, and sediment deposition as a result of more than a century of converting bottomland hardwood forests to agricultural lands.

Sediments from frequently flooded agricultural lands often carry pesticides and fertilizers, the latter associated with the formation of the hypoxic (low oxygen) dead zone in the Gulf of Mexico. Forest buffers reduce runoff and sediment load from flooded agricultural lands; in the Lower Mississippi Alluvial Valley, the frequently flooded agricultural land in the batture (land that lies between a river and its levees, pronounced batch-er) seems a prime site to start reforestation efforts.

The U.S. Endowment for Forestry and Communities (the Endowment) commissioned the study, and co-funded it with Forest Service State and Private Forestry. “This study provides further evidence of the key role forests play in flood control and in reducing sediment flow from agricultural lands into our watersheds,” notes Carlton Owen, president and CEO of the Endowment. “The new forest areas would also provide regional economic and environmental benefits by not only improving water quality but also wildlife habitat and recreational opportunities.”

The researchers chose two Lower Mississippi River Alluvial Valley watersheds—the large Lower Yazoo River Watershed and the smaller Peters Creek Watershed—to model the effects of reforestation in or near the battures on water outflow and sediment load (the amount of solid material carried by a river or stream). They performed two simulations, the first to predict water outflow and sediment load without reforestation, the second to project over 10 years the potential impacts of converting different levels—25, 50, 75, and 100 percent—of the land to forest in or near the battures.

“Comparing simulation results with and without reforestation showed that converting agricultural lands close to streams into forests would greatly lessen water outflow and reduce the effects of sediment load as far as the Gulf of Mexico,” says Ouyang, lead author of the article and research hydrologist at the SRS Center for Bottomland Hardwoods Research. “In general, the larger the area converted, the greater the effect. For the Lower Yazoo River watershed, a two-fold increase in forest land area would result in approximately a two-fold reduction in the annual volume of water outflow and the mass of sediment load moving into the river.”

Ying Ouyang | EurekAlert!
Further information:
http://www.fs.fed.us
http://www.srs.fs.usda.gov/pubs/45134

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>