Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows drifting fish larvae allow marine reserves to rebuild fisheries

23.12.2010
Marine ecologists at Oregon State University have shown for the first time that tiny fish larvae can drift with ocean currents and "re-seed" fish stocks significant distances away – more than 100 miles in a new study from Hawaii.

The findings add credibility to what scientists have believed for some time, but until now been unable to directly document. The study also provides a significant demonstration of the ability of marine reserves to rebuild fishery stocks in areas outside the reserves.

The research was published this week in PLoS One, a scientific journal.

"We already know that marine reserves will grow larger fish and some of them will leave that specific area, what we call spillover," said Mark Hixon, a professor of marine biology at OSU. "Now we've clearly shown that fish larvae that were spawned inside marine reserves can drift with currents and replenish fished areas long distances away.

"This is a direct observation, not just a model, that successful marine reserves can sustain fisheries beyond their borders," he said. "That's an important result that should help resolve some skepticism about reserves. And the life cycle of our study fish is very similar to many species of marine fish, including rockfishes and other species off Oregon. The results are highly relevant to other regions."

The findings were based on the creation in 1999 of nine marine protected areas on the west coast of the "big island" of Hawaii. They were set up in the face of serious declines of a beautiful tropical fish called yellow tang, which formed the basis for an important trade in the aquarium industry.

"This fishery was facing collapse about 10 years ago," Hixon said. "Now, after the creation of marine reserves, the fishery is doing well."

The yellow tang was an ideal fish to help answer the question of larval dispersal because once its larvae settle onto a reef and begin to grow, they are not migratory, and live in a home range about half a mile in diameter. If the fish are going to move any significant distance from where they are born, it would have to be as a larva – a young life form about the size of a grain of rice – drifting with the currents for up to two months before settling back to adult habitats.

Mark Christie, an OSU postdoctoral research associate and lead author of the study, developed some new approaches to the use of DNA fingerprinting and sophisticated statistical analysis that were able to match juvenile fish with their parents, wherever they may have been from. In field research from 2006, the scientists performed genetic and statistical analyses on 1,073 juvenile and adult fish, and found evidence that many healthy juvenile fish had spawned from parents long distances away, up to 114 miles, including some from marine protected areas.

"This is similar to the type of forensic technology you might see on television, but more advanced," Christie said. "We're optimistic it will help us learn a great deal more about fish movements, fishery stocks, and the genetic effects of fishing, including work with steelhead, salmon, rockfish and other species here in the Pacific Northwest."

This study should help answer some of the questions about the ability of marine reserves to help rebuild fisheries, the scientists said. It should also add scientific precision to the siting of reserves for that purpose, which is just one of many roles that a marine reserve can play. Many states are establishing marine reserves off their coasts, and Oregon is in the process of developing a limited network of marine reserves to test their effectiveness. The methods used in this study could also become a powerful new tool to improve fisheries management, Hixon said.

"Tracking the movement of fish larvae in the open ocean isn't the easiest thing in the world to do," Hixon said. "It's not like putting a radio collar on a deer. This approach will provide valuable information to help optimize the placement of reserves, identify the boundaries of fishery stocks, and other applications."

The issue of larval dispersal is also important, the researchers say, because past studies at OSU have shown that large, fat female fish produce massive amounts of eggs and sometimes healthier larvae than smaller fish. For example, a single two-foot vermillion rockfish produces more eggs than 17 females that are 14 inches long.

But these same large fish, which have now been shown to play key roles in larval production and fish population replenishment, are also among those most commonly sought in fisheries.

The study was done in collaboration with the University of Hawaii, Washington State University, National Marine Fisheries Services and the Hawaii Department of Natural Resources. It was funded by Conservation International.

"The identification of connectivity between distant reef fish populations on the island of Hawaii demonstrates that human coastal communities are also linked," the researchers wrote in their conclusion. "Management in one part of the ocean affects people who use another part of the ocean."

Editor's Note: Digital images are available to illustrate this story:

Yellow tang:
http://www.flickr.com/photos/oregonstateuniversity/5278933342/
Fish analysis:
http://www.flickr.com/photos/oregonstateuniversity/5278338677/
School of fish:
http://www.flickr.com/photos/oregonstateuniversity/5278952604/

Mark Hixon | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>