Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Study Indicates Risk of Amazon Rainforest Dieback Due to Global Warming is Higher than Previously Projected

A new study co-authored by Boston University Professor of Earth & Environment Ranga Myneni suggests the southern portion of the Amazon rainforest is at a much higher risk of dieback due to climate change than projections made in the latest report by the Intergovernmental Panel on Climate Change (IPCC).

If severe enough, the loss of rainforest could cause the release of large volumes of the greenhouse gas carbon dioxide into the atmosphere. It could also disrupt plant and animal communities in one of the regions of highest biodiversity in the world.

Using ground-based rainfall measurements from the last three decades, the researchers found that since 1979, the dry season in southern Amazonia has lasted about a week longer per decade. At the same time, the annual fire season has become longer. According to the study, the most likely explanation for the lengthening dry season is global warming.

“The dry season over the southern Amazon is already marginal for maintaining rainforest,” says Rong Fu, co-author and professor at The University of Texas at Austin’s Jackson School of Geosciences Fu. “At some point, if it becomes too long, the rainforest will reach a tipping point.”

The new results are in stark contrast to forecasts made by climate models used by the IPCC. Even under future scenarios in which atmospheric greenhouse gases rise dramatically, the models project the dry season in the southern Amazon to be only a few to ten days longer by the end of the century and therefore the risk of climate change-induced rainforest dieback should be relatively low.

The report appears this week in the journal Proceedings of the National Academy of Sciences.

“The length of the dry season in the southern Amazon is the most important climate condition controlling the rainforest,” says Fu. “If the dry season is too long, the rainforest will not survive.”

To see why the length of dry season is such a limiting factor, imagine there is heavier than usual rainfall during the wet season. The soil can only hold so much water and the rest runs off. The water stored in the soil at the end of the wet season is all that the rainforest trees have to last them through the dry season. The longer the dry season lasts, regardless of how wet the wet season was, the more stressed the trees become and the more susceptible they are to fire.

The researchers say the most likely explanation for the lengthening dry season in the southern Amazon in recent decades is human-caused greenhouse warming which inhibits rainfall in two ways: First, it makes it harder for warm, dry air near the surface to rise up and freely mix with cool, moist air above. And second, it blocks cold front incursions from outside the tropics that could trigger rainfall. The climate models used by the IPCC do a poor job representing these processes, which might explain why they project only a slightly longer Amazonian dry season, says Fu.

The Amazon rainforest normally removes the greenhouse gas carbon dioxide from the atmosphere, but during a severe drought in 2005, it released 1 petagram of carbon (about one tenth of annual human emissions) to the atmosphere.

“The more severe 2010 drought impacted twice the forested area than the 2005 drought and could have likely resulted in substantial carbon loss from the forests,” says Myneni, who has previously studied these droughts with NASA satellite sensor data.

Myneni and his colleagues estimate that if dry seasons continue to lengthen at just half the rate of recent decades, the Amazon drought of 2005 could become the norm, rather than the exception, by the end of this century.

Some scientists have speculated that the combination of longer dry seasons, higher surface temperatures and more fragmented forests due to ongoing human-caused deforestation could eventually convert much of southern Amazonia from rainforest to savanna.

Earlier studies have shown that human-caused deforestation in the Amazon can alter rainfall patterns. But the researchers didn’t see a strong signal of deforestation in the pattern of increasing dry season length. The dry season length increase was most pronounced in the southwestern Amazon while the most intense deforestation occurred in the southeastern Amazon.

Because the northwestern Amazon has much higher rainfall and a shorter dry season than the southern Amazon, the researchers think it is much less vulnerable to climate change.

The co-authors of this study include Rong Fu, Lei Yin, Robert Dickinson, Lei Huang and Sudip Chakraborty at The University of Texas at Austin’s Jackson School of Geosciences; Wenhong Li at Duke University; Paola A. Arias at Universidad de Antioquia in Colombia; Katia Fernandes at Columbia University’s Lamont-Doherty Earth Observatory; Brant Liebmann at the National Oceanic & Atmospheric Administration (NOAA); Rosie Fisher at the National Center for Atmospheric Research; and Ranga Myneni at Boston University.

This work is supported by the National Science Foundation (AGS 0937400) and NOAA Climate Program Office Modeling, Analysis, Prediction and Projection Program (NA10OAAR4310157) and the NASA Earth Science Division.

Note to Reporters: A preprint of the article is available to journalists on the following secure reporters-only web site:

About Boston University—Founded in 1839, Boston University is an internationally recognized private research university with more than 30,000 students participating in undergraduate, graduate, and professional programs. As Boston University’s largest academic division, the College and Graduate School of Arts & Sciences is the heart of the BU experience with a global reach that enhances the University’s reputation for teaching and research. In 2012, BU joined the Association of American Universities (AAU), a consortium of 62 leading research universities in the United States and Canada.

Author contact for the study:

Professor Ranga Myneni
Department of Earth & Environment
Boston University
675 Commonwealth Ave
Boston, MA 02215
(617) 358-5742

Professor Ranga Myneni | Newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>