Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Reveals Aerosol Plumes Downwind of the Deepwater Horizon Oil Spill

11.03.2011
Scientists describe two distinct plumes of oily aerosols that traveled from sea surface to atmosphere

Scientists from the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science were part of a national research team to find two plumes of oil-based pollutants downwind of the BP Deep Water Horizon oil spill. In a study published in this week’s issue of the journal Science, the research team offers new insight into the mechanism by which the crude oil traveled from the sea surface to the atmosphere.

The National Oceanic and Atmospheric Administration (NOAA)-led research team collected data of atmosphere gas and aerosol concentrations during two flights, on June 8 and June 10, aboard a specially equipped NOAA WP-3 Orion aircraft.

“By having such a well-defined source of the evaporating oil we were able to investigate how aerosols form in the atmosphere,” said UM Rosenstiel School Professor of Marine and Atmospheric Chemistry Elliot Atlas, a co-author of the paper. Atlas regularly uses similar techniques to study aerosol formation and air pollution downwind of major U.S. cities, such as Boston and Los Angeles.

The data revealed that two plumes of hydrocarbons were released into the atmosphere by the surface oil and from the smoke associated with the burning of oil during cleanup efforts. The first was a narrower three-kilometer (1.8-mile) wide hydrocarbon plume downwind of the spill site. The researchers suggest that this was the result of “direct evaporation of fresh oil on the sea surface.”

The second, a larger 40-kilometer (24-mile)-wide plume, contained higher concentrations of organic aerosols and was “formed from vapors released from the oil and the condensation of their atmospheric oxidation products onto existing particles,” according to the study’s authors. The wider oil vapor-based plume contributed to the formation of secondary organic aerosols, which are the result of oil vapor reacting in the atmosphere.

The researchers observed that methane and other light hydrocarbons dissolved in the water column, while other, less volatile components of crude oil, made their way to the surface and into the atmosphere.

Claire Paris, a UM Rosenstiel School assistant professor of Applied Marine Physics, and UM Rosenstiel School researcher Matthieu Le Hénaff, in collaboration with Ashwanth Srinivasan of UM’s Center for Computational Science produced numerical simulations of the oil spill during and following the airborne measurements by the NOAA-led team.

“These simulations of fresh oil reaching the sea surface and aged oil spreading in a wider area downwind are key to understanding the evaporation processes of more or less volatile hydrocarbon compounds,” said Paris, a biophysical modeler. “The model predictions that included oil behavior, advection, and wind drift helped link the measured organic aerosols to their source and mechanism of emission.”

UM Rosenstiel School co-investigators Paris, Srinivasan and Meteorology and Physical Oceanography Research Associate Professor Villy Kourafalou were awarded a National Science Foundation RAPID grant in July 2010 to model the three-dimensional dynamics of the oil spill and assess its fate and extent.

This study provides researchers with a more comprehensive understanding of the effects of air pollutants and their secondary chemical products on the environment, human health and global climate change.

“The study also shows the benefit of having the right scientific capabilities available for rapid hazard response,” said Atlas, who was part of a research team studying air quality in California that was called in to take air measurements during the oil spill. “It was fortuitous that we were able to get out there quickly with the necessary instruments and expertise, which turned out to be very useful.”

The study, titled “Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill” was published in the March 11 issue of the journal Science.

About the University of Miami’s Rosenstiel School
The University of Miami’s mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940’s, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world’s premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>