Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Study Reveals Aerosol Plumes Downwind of the Deepwater Horizon Oil Spill

Scientists describe two distinct plumes of oily aerosols that traveled from sea surface to atmosphere

Scientists from the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science were part of a national research team to find two plumes of oil-based pollutants downwind of the BP Deep Water Horizon oil spill. In a study published in this week’s issue of the journal Science, the research team offers new insight into the mechanism by which the crude oil traveled from the sea surface to the atmosphere.

The National Oceanic and Atmospheric Administration (NOAA)-led research team collected data of atmosphere gas and aerosol concentrations during two flights, on June 8 and June 10, aboard a specially equipped NOAA WP-3 Orion aircraft.

“By having such a well-defined source of the evaporating oil we were able to investigate how aerosols form in the atmosphere,” said UM Rosenstiel School Professor of Marine and Atmospheric Chemistry Elliot Atlas, a co-author of the paper. Atlas regularly uses similar techniques to study aerosol formation and air pollution downwind of major U.S. cities, such as Boston and Los Angeles.

The data revealed that two plumes of hydrocarbons were released into the atmosphere by the surface oil and from the smoke associated with the burning of oil during cleanup efforts. The first was a narrower three-kilometer (1.8-mile) wide hydrocarbon plume downwind of the spill site. The researchers suggest that this was the result of “direct evaporation of fresh oil on the sea surface.”

The second, a larger 40-kilometer (24-mile)-wide plume, contained higher concentrations of organic aerosols and was “formed from vapors released from the oil and the condensation of their atmospheric oxidation products onto existing particles,” according to the study’s authors. The wider oil vapor-based plume contributed to the formation of secondary organic aerosols, which are the result of oil vapor reacting in the atmosphere.

The researchers observed that methane and other light hydrocarbons dissolved in the water column, while other, less volatile components of crude oil, made their way to the surface and into the atmosphere.

Claire Paris, a UM Rosenstiel School assistant professor of Applied Marine Physics, and UM Rosenstiel School researcher Matthieu Le Hénaff, in collaboration with Ashwanth Srinivasan of UM’s Center for Computational Science produced numerical simulations of the oil spill during and following the airborne measurements by the NOAA-led team.

“These simulations of fresh oil reaching the sea surface and aged oil spreading in a wider area downwind are key to understanding the evaporation processes of more or less volatile hydrocarbon compounds,” said Paris, a biophysical modeler. “The model predictions that included oil behavior, advection, and wind drift helped link the measured organic aerosols to their source and mechanism of emission.”

UM Rosenstiel School co-investigators Paris, Srinivasan and Meteorology and Physical Oceanography Research Associate Professor Villy Kourafalou were awarded a National Science Foundation RAPID grant in July 2010 to model the three-dimensional dynamics of the oil spill and assess its fate and extent.

This study provides researchers with a more comprehensive understanding of the effects of air pollutants and their secondary chemical products on the environment, human health and global climate change.

“The study also shows the benefit of having the right scientific capabilities available for rapid hazard response,” said Atlas, who was part of a research team studying air quality in California that was called in to take air measurements during the oil spill. “It was fortuitous that we were able to get out there quickly with the necessary instruments and expertise, which turned out to be very useful.”

The study, titled “Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill” was published in the March 11 issue of the journal Science.

About the University of Miami’s Rosenstiel School
The University of Miami’s mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940’s, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world’s premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit

Barbra Gonzalez | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>