Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Study Reveals Aerosol Plumes Downwind of the Deepwater Horizon Oil Spill

11.03.2011
Scientists describe two distinct plumes of oily aerosols that traveled from sea surface to atmosphere

Scientists from the University of Miami (UM) Rosenstiel School of Marine & Atmospheric Science were part of a national research team to find two plumes of oil-based pollutants downwind of the BP Deep Water Horizon oil spill. In a study published in this week’s issue of the journal Science, the research team offers new insight into the mechanism by which the crude oil traveled from the sea surface to the atmosphere.

The National Oceanic and Atmospheric Administration (NOAA)-led research team collected data of atmosphere gas and aerosol concentrations during two flights, on June 8 and June 10, aboard a specially equipped NOAA WP-3 Orion aircraft.

“By having such a well-defined source of the evaporating oil we were able to investigate how aerosols form in the atmosphere,” said UM Rosenstiel School Professor of Marine and Atmospheric Chemistry Elliot Atlas, a co-author of the paper. Atlas regularly uses similar techniques to study aerosol formation and air pollution downwind of major U.S. cities, such as Boston and Los Angeles.

The data revealed that two plumes of hydrocarbons were released into the atmosphere by the surface oil and from the smoke associated with the burning of oil during cleanup efforts. The first was a narrower three-kilometer (1.8-mile) wide hydrocarbon plume downwind of the spill site. The researchers suggest that this was the result of “direct evaporation of fresh oil on the sea surface.”

The second, a larger 40-kilometer (24-mile)-wide plume, contained higher concentrations of organic aerosols and was “formed from vapors released from the oil and the condensation of their atmospheric oxidation products onto existing particles,” according to the study’s authors. The wider oil vapor-based plume contributed to the formation of secondary organic aerosols, which are the result of oil vapor reacting in the atmosphere.

The researchers observed that methane and other light hydrocarbons dissolved in the water column, while other, less volatile components of crude oil, made their way to the surface and into the atmosphere.

Claire Paris, a UM Rosenstiel School assistant professor of Applied Marine Physics, and UM Rosenstiel School researcher Matthieu Le Hénaff, in collaboration with Ashwanth Srinivasan of UM’s Center for Computational Science produced numerical simulations of the oil spill during and following the airborne measurements by the NOAA-led team.

“These simulations of fresh oil reaching the sea surface and aged oil spreading in a wider area downwind are key to understanding the evaporation processes of more or less volatile hydrocarbon compounds,” said Paris, a biophysical modeler. “The model predictions that included oil behavior, advection, and wind drift helped link the measured organic aerosols to their source and mechanism of emission.”

UM Rosenstiel School co-investigators Paris, Srinivasan and Meteorology and Physical Oceanography Research Associate Professor Villy Kourafalou were awarded a National Science Foundation RAPID grant in July 2010 to model the three-dimensional dynamics of the oil spill and assess its fate and extent.

This study provides researchers with a more comprehensive understanding of the effects of air pollutants and their secondary chemical products on the environment, human health and global climate change.

“The study also shows the benefit of having the right scientific capabilities available for rapid hazard response,” said Atlas, who was part of a research team studying air quality in California that was called in to take air measurements during the oil spill. “It was fortuitous that we were able to get out there quickly with the necessary instruments and expertise, which turned out to be very useful.”

The study, titled “Organic Aerosol Formation Downwind from the Deepwater Horizon Oil Spill” was published in the March 11 issue of the journal Science.

About the University of Miami’s Rosenstiel School
The University of Miami’s mission is to educate and nurture students, to create knowledge, and to provide service to our community and beyond. Committed to excellence and proud of the diversity of our University family, we strive to develop future leaders of our nation and the world. Founded in the 1940’s, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world’s premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life. For more information, please visit www.rsmas.miami.edu.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>