Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study ranks 'hotspots' of human impact on coastal areas

14.07.2009
Coastal marine ecosystems are at risk worldwide as a result of human activities, according to scientists at UC Santa Barbara who have recently published a study in the Journal of Conservation Letters. The authors have performed the first integrated analysis of all coastal areas of the world.

"Resource management and conservation in coastal waters must address a litany of impacts from human activities, from the land, such as urban runoff and other types of pollution, and from the sea," said Benjamin S. Halpern, first author, who is based at the National Center for Ecological Analysis and Synthesis (NCEAS) at UCSB.

"One of the great challenges is to decide where and how much to allocate limited resources to tackling these problems," he said. "Our results identify where it is absolutely imperative that land-based threats are addressed –– so-called hotspots of land-based impact –– and where these land-based sources of impact are minimal or can be ignored."

The hottest hotspot is at the mouth of the Mississippi River, explained Halpern, with the other top 10 in Asia and the Mediterranean. "These are areas where conservation efforts will almost certainly fail if they don't directly address what people are doing on land upstream from these locations."

Nutrient runoff from upstream farms has caused a persistent "dead zone" in the Gulf of Mexico, where the Mississippi runs into this body of water. The dead zone is caused by an overgrowth of algae that feeds on the nutrients and takes up most of the oxygen in the water.

The authors state that they have provided the first integrated analysis for all coastal areas of the world. They surveyed four key land-based drivers of ecological change:

nutrient input from agriculture in urban settings

organic pollutants derived from pesticides

inorganic pollutants from urban runoff

direct impact of human populations on coastal marine habitats.

Halpern explained that a large portion of the world's coastlines experience very little effect of what happens on land –– nearly half of the coastline and more than 90 percent of all coastal waters. "This is because a vast majority of the planet's landscape drains into relatively few very large rivers, that in turn affect a small amount of coastal area," said Halpern. "In these places with little impact from human activities on land, marine conservation can and needs to focus primarily on what is happening in the ocean. For example: fishing, climate change, invasive species, and commercial shipping."

Coauthors from NCEAS are Colin M. Ebert, Carrie V. Kappel, Matthew Perry, Kimberly A. Selkoe, and Shaun Walbridge. Fiorenza Micheli of Stanford University's Hopkins Marine Station and Elizabeth M. P. Madin of UCSB's Department of Ecology, Evolution and Marine Biology are also co-authors. Selkoe is also affiliated with the University of Hawaii's Hawaii Institute of Marine Biology.

NCEAS is funded by the National Science Foundation (NSF). The David and Lucile Packard Foundation, the National Marine Sanctuaries, and an NSF Graduate Research Fellowship provided additional support for this research.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>