Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study ranks 'hotspots' of human impact on coastal areas

14.07.2009
Coastal marine ecosystems are at risk worldwide as a result of human activities, according to scientists at UC Santa Barbara who have recently published a study in the Journal of Conservation Letters. The authors have performed the first integrated analysis of all coastal areas of the world.

"Resource management and conservation in coastal waters must address a litany of impacts from human activities, from the land, such as urban runoff and other types of pollution, and from the sea," said Benjamin S. Halpern, first author, who is based at the National Center for Ecological Analysis and Synthesis (NCEAS) at UCSB.

"One of the great challenges is to decide where and how much to allocate limited resources to tackling these problems," he said. "Our results identify where it is absolutely imperative that land-based threats are addressed –– so-called hotspots of land-based impact –– and where these land-based sources of impact are minimal or can be ignored."

The hottest hotspot is at the mouth of the Mississippi River, explained Halpern, with the other top 10 in Asia and the Mediterranean. "These are areas where conservation efforts will almost certainly fail if they don't directly address what people are doing on land upstream from these locations."

Nutrient runoff from upstream farms has caused a persistent "dead zone" in the Gulf of Mexico, where the Mississippi runs into this body of water. The dead zone is caused by an overgrowth of algae that feeds on the nutrients and takes up most of the oxygen in the water.

The authors state that they have provided the first integrated analysis for all coastal areas of the world. They surveyed four key land-based drivers of ecological change:

nutrient input from agriculture in urban settings

organic pollutants derived from pesticides

inorganic pollutants from urban runoff

direct impact of human populations on coastal marine habitats.

Halpern explained that a large portion of the world's coastlines experience very little effect of what happens on land –– nearly half of the coastline and more than 90 percent of all coastal waters. "This is because a vast majority of the planet's landscape drains into relatively few very large rivers, that in turn affect a small amount of coastal area," said Halpern. "In these places with little impact from human activities on land, marine conservation can and needs to focus primarily on what is happening in the ocean. For example: fishing, climate change, invasive species, and commercial shipping."

Coauthors from NCEAS are Colin M. Ebert, Carrie V. Kappel, Matthew Perry, Kimberly A. Selkoe, and Shaun Walbridge. Fiorenza Micheli of Stanford University's Hopkins Marine Station and Elizabeth M. P. Madin of UCSB's Department of Ecology, Evolution and Marine Biology are also co-authors. Selkoe is also affiliated with the University of Hawaii's Hawaii Institute of Marine Biology.

NCEAS is funded by the National Science Foundation (NSF). The David and Lucile Packard Foundation, the National Marine Sanctuaries, and an NSF Graduate Research Fellowship provided additional support for this research.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>