Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study illustrates shifting biomes in Alaska

22.02.2011
Led by scientists at Woods Hole Research Center

A new study released today in the EarlyView of Ecology Letters addresses forest productivity trends in Alaska, highlighting a shift in biomes caused by a warming climate.

The findings, conducted by scientists at the Woods Hole Research Center and three other institutions based in Alaska and France, linked satellite observations with an extensive and unique tree-ring data set.

Patterns observed support current hypotheses regarding increased growth of evergreen forest at the margins of present tundra and declining productivity at the margins of temperate forest to the south. This study provides a regional picture of forest productivity which did not previously exist.

According to lead author Pieter Beck, a post-doctoral fellow at WHRC, "The results provide evidence for the initiation of a biome shift in response to climate change, and indicate that some ecosystem models may be missing fundamental changes taking place in the circumpolar region."

He adds that "while the findings contrast with some recent model predictions of increased high latitude vegetation productivity, they are consistent with longer-term projections of global vegetation models."

Scott Goetz, a senior scientist at WHRC, proposed the study and co-authored the manuscript. He says, "Most people don't think of high latitudes forests as being drought stressed - and they are not in the traditional sense of having soils dry up and blow away - but their growth is negatively impacted by hot dry air masses and those have increased in recent years. This paper shows those drought impacts are captured in both the satellite and the tree ring record. Of course the tree rings go back in time much further than the satellite observations, which only extend about 30 years, but the changes that we observe from satellites are clearly supported not only by the tree rings but also by carbon isotope analysis of the wood."

Beck adds that climate driven changes in the disturbance regime, which can rapidly alter forest dynamics and the ability of boreal forests to migrate into current tundra areas, will most likely shape the biome shift in the future.

In addition to WHRC, researchers from the University of Alaska School of Natural Resources and Agricultural Sciences, the Panthéon Sorbonne Archéologie des Amériques, and the Bureau of Land Management participated in the study and co-authored the paper.

Elizabeth Braun | EurekAlert!
Further information:
http://www.whrc.org

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>