Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study IDs New Marine Protected Areas for Madagascar

28.02.2012
Creating a “Diversified Portfolio” for Marine Protection

New Study uses innovative method for establishing range of conservation options along the coast of Madagascar

Madagascar now has a roadmap for proposed one million hectare increase in marine protected areas to improve local management of coastal fisheries

University of California, Berkeley, WCS, and others authored study

A new study by the University of California, Berkeley, Wildlife Conservation Society, and others uses a new scientific methodology for establishing marine protected areas in Madagascar that offers a “diversified portfolio” of management options – from strict no-take zones to areas that would allow fishing.

The methodology looks at existing information on the country’s climate, along with dependence on fisheries and marine resources, and applies three different planning approaches to establish priorities for management along the entirety of Madagascar’s west coast.

The diversified portfolio approach to marine conservation greatly increases the likelihood of finding and implementing successful management that fits a country’s needs while simplifying the process of picking locations and the most appropriate forms of marine management, the authors say.

Considering the need to develop a management regime for the reefs and mangroves of Madagascar that factors in the impacts of climate change, the methodology recommends a range of conservation areas with strict no-take protection as only one type of management recommendation.

The paper appears in the February 16th issue of the open access journal PLoS One. Authors include: Thomas Allnut, Merrill Baker, and Claire Kremen of the University of California, Berkeley; Tim McClanahan, Caleb McClennen, Andry Rakotomanjaka, and Tantely Tianarisoa of the Wildlife Conservation Society; Erwann Lagabrielle and Serge Andrefouet of the Institut de Recherche pour le Développement; and Reg Watson of the University of British Columbia.

The authors say the process provides a more efficient and comprehensive way to plan on a large scale and found that several marine areas in Madagascar come out as conservation priorities across all methodologies. Specifically, these included reefs in the vicinity of the Barren Islands, the large shallow banks to the northwest and southwest, and the reefs of Juan de Nova.

The study highlights the differences in the country’s regional patterns. These include heavy human pressure in the south and areas of high climate variability intermixed with lower vulnerability but high biodiversity in the northwest. Areas of particularly high biodiversity value include the islands, reefs, and bays of the northwest; the fringing reefs of the southwest; and the barrier reefs and islands of the central west coast.

Madagascar is one of the poorest countries on Earth yet has proposed to create over 1 million hectares (3,861 square miles) of protected areas to provide for the long-term conservation of its marine resources.

“It behooves countries, in the face of impending fisheries and climate crises, to plan and implement intelligent management that will increase the resilience of their natural marine resources,” said co-author Tim McClanahan of the Wildlife Conservation Society, “This paper will provide a roadmap for Madagascar to plan and manage these resources and the methods should prove affordable and useful for the poorest countries where adaptation to climate change will make marine spatial planning a critical part of a successful response.”

Co-author Caleb McClennen, WCS Director for Marine Programs, said: “Creation of protected areas is a key conservation strategy to safeguarding marine resources, but one size doesn’t fit all. This study demonstrates the need for a comprehensive portfolio of management solutions from community based coastal fisheries to fully protected marine parks.”

This study has been supported partly by the John D. and Catherine T. MacArthur Foundation. The MacArthur Foundation supports creative people and effective institutions committed to building a more just, verdant, and peaceful world. In addition to selecting the MacArthur Fellows, the Foundation works to defend human rights, advance global conservation and security, make cities better places, and understand how technology is affecting children and society. More information is at www.macfound.org.

The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so through science, global conservation, education and the management of the world's largest system of urban wildlife parks, led by the Flagship Bronx Zoo. Together these activities change attitudes toward nature and help people imagine wildlife and humans living in harmony. WCS is committed to this mission because it is essential to the integrity of life on Earth. Visit: www.wcs.org

Special Note to the Media: If you would like to guide your readers or viewers to a Web link where they can make donations in support of helping save wildlife and wild places, please direct them to wcs.org.

Stephen Sautner | Newswise Science News
Further information:
http://www.wcs.org
http://www.macfound.org

More articles from Ecology, The Environment and Conservation:

nachricht Dry landscapes can increase disease transmission
20.06.2018 | Forschungsverbund Berlin e.V.

nachricht 100 % Organic Farming in Bhutan – a Realistic Target?
15.06.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>