Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study IDs New Marine Protected Areas for Madagascar

28.02.2012
Creating a “Diversified Portfolio” for Marine Protection

New Study uses innovative method for establishing range of conservation options along the coast of Madagascar

Madagascar now has a roadmap for proposed one million hectare increase in marine protected areas to improve local management of coastal fisheries

University of California, Berkeley, WCS, and others authored study

A new study by the University of California, Berkeley, Wildlife Conservation Society, and others uses a new scientific methodology for establishing marine protected areas in Madagascar that offers a “diversified portfolio” of management options – from strict no-take zones to areas that would allow fishing.

The methodology looks at existing information on the country’s climate, along with dependence on fisheries and marine resources, and applies three different planning approaches to establish priorities for management along the entirety of Madagascar’s west coast.

The diversified portfolio approach to marine conservation greatly increases the likelihood of finding and implementing successful management that fits a country’s needs while simplifying the process of picking locations and the most appropriate forms of marine management, the authors say.

Considering the need to develop a management regime for the reefs and mangroves of Madagascar that factors in the impacts of climate change, the methodology recommends a range of conservation areas with strict no-take protection as only one type of management recommendation.

The paper appears in the February 16th issue of the open access journal PLoS One. Authors include: Thomas Allnut, Merrill Baker, and Claire Kremen of the University of California, Berkeley; Tim McClanahan, Caleb McClennen, Andry Rakotomanjaka, and Tantely Tianarisoa of the Wildlife Conservation Society; Erwann Lagabrielle and Serge Andrefouet of the Institut de Recherche pour le Développement; and Reg Watson of the University of British Columbia.

The authors say the process provides a more efficient and comprehensive way to plan on a large scale and found that several marine areas in Madagascar come out as conservation priorities across all methodologies. Specifically, these included reefs in the vicinity of the Barren Islands, the large shallow banks to the northwest and southwest, and the reefs of Juan de Nova.

The study highlights the differences in the country’s regional patterns. These include heavy human pressure in the south and areas of high climate variability intermixed with lower vulnerability but high biodiversity in the northwest. Areas of particularly high biodiversity value include the islands, reefs, and bays of the northwest; the fringing reefs of the southwest; and the barrier reefs and islands of the central west coast.

Madagascar is one of the poorest countries on Earth yet has proposed to create over 1 million hectares (3,861 square miles) of protected areas to provide for the long-term conservation of its marine resources.

“It behooves countries, in the face of impending fisheries and climate crises, to plan and implement intelligent management that will increase the resilience of their natural marine resources,” said co-author Tim McClanahan of the Wildlife Conservation Society, “This paper will provide a roadmap for Madagascar to plan and manage these resources and the methods should prove affordable and useful for the poorest countries where adaptation to climate change will make marine spatial planning a critical part of a successful response.”

Co-author Caleb McClennen, WCS Director for Marine Programs, said: “Creation of protected areas is a key conservation strategy to safeguarding marine resources, but one size doesn’t fit all. This study demonstrates the need for a comprehensive portfolio of management solutions from community based coastal fisheries to fully protected marine parks.”

This study has been supported partly by the John D. and Catherine T. MacArthur Foundation. The MacArthur Foundation supports creative people and effective institutions committed to building a more just, verdant, and peaceful world. In addition to selecting the MacArthur Fellows, the Foundation works to defend human rights, advance global conservation and security, make cities better places, and understand how technology is affecting children and society. More information is at www.macfound.org.

The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so through science, global conservation, education and the management of the world's largest system of urban wildlife parks, led by the Flagship Bronx Zoo. Together these activities change attitudes toward nature and help people imagine wildlife and humans living in harmony. WCS is committed to this mission because it is essential to the integrity of life on Earth. Visit: www.wcs.org

Special Note to the Media: If you would like to guide your readers or viewers to a Web link where they can make donations in support of helping save wildlife and wild places, please direct them to wcs.org.

Stephen Sautner | Newswise Science News
Further information:
http://www.wcs.org
http://www.macfound.org

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>