Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study IDs New Marine Protected Areas for Madagascar

28.02.2012
Creating a “Diversified Portfolio” for Marine Protection

New Study uses innovative method for establishing range of conservation options along the coast of Madagascar

Madagascar now has a roadmap for proposed one million hectare increase in marine protected areas to improve local management of coastal fisheries

University of California, Berkeley, WCS, and others authored study

A new study by the University of California, Berkeley, Wildlife Conservation Society, and others uses a new scientific methodology for establishing marine protected areas in Madagascar that offers a “diversified portfolio” of management options – from strict no-take zones to areas that would allow fishing.

The methodology looks at existing information on the country’s climate, along with dependence on fisheries and marine resources, and applies three different planning approaches to establish priorities for management along the entirety of Madagascar’s west coast.

The diversified portfolio approach to marine conservation greatly increases the likelihood of finding and implementing successful management that fits a country’s needs while simplifying the process of picking locations and the most appropriate forms of marine management, the authors say.

Considering the need to develop a management regime for the reefs and mangroves of Madagascar that factors in the impacts of climate change, the methodology recommends a range of conservation areas with strict no-take protection as only one type of management recommendation.

The paper appears in the February 16th issue of the open access journal PLoS One. Authors include: Thomas Allnut, Merrill Baker, and Claire Kremen of the University of California, Berkeley; Tim McClanahan, Caleb McClennen, Andry Rakotomanjaka, and Tantely Tianarisoa of the Wildlife Conservation Society; Erwann Lagabrielle and Serge Andrefouet of the Institut de Recherche pour le Développement; and Reg Watson of the University of British Columbia.

The authors say the process provides a more efficient and comprehensive way to plan on a large scale and found that several marine areas in Madagascar come out as conservation priorities across all methodologies. Specifically, these included reefs in the vicinity of the Barren Islands, the large shallow banks to the northwest and southwest, and the reefs of Juan de Nova.

The study highlights the differences in the country’s regional patterns. These include heavy human pressure in the south and areas of high climate variability intermixed with lower vulnerability but high biodiversity in the northwest. Areas of particularly high biodiversity value include the islands, reefs, and bays of the northwest; the fringing reefs of the southwest; and the barrier reefs and islands of the central west coast.

Madagascar is one of the poorest countries on Earth yet has proposed to create over 1 million hectares (3,861 square miles) of protected areas to provide for the long-term conservation of its marine resources.

“It behooves countries, in the face of impending fisheries and climate crises, to plan and implement intelligent management that will increase the resilience of their natural marine resources,” said co-author Tim McClanahan of the Wildlife Conservation Society, “This paper will provide a roadmap for Madagascar to plan and manage these resources and the methods should prove affordable and useful for the poorest countries where adaptation to climate change will make marine spatial planning a critical part of a successful response.”

Co-author Caleb McClennen, WCS Director for Marine Programs, said: “Creation of protected areas is a key conservation strategy to safeguarding marine resources, but one size doesn’t fit all. This study demonstrates the need for a comprehensive portfolio of management solutions from community based coastal fisheries to fully protected marine parks.”

This study has been supported partly by the John D. and Catherine T. MacArthur Foundation. The MacArthur Foundation supports creative people and effective institutions committed to building a more just, verdant, and peaceful world. In addition to selecting the MacArthur Fellows, the Foundation works to defend human rights, advance global conservation and security, make cities better places, and understand how technology is affecting children and society. More information is at www.macfound.org.

The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so through science, global conservation, education and the management of the world's largest system of urban wildlife parks, led by the Flagship Bronx Zoo. Together these activities change attitudes toward nature and help people imagine wildlife and humans living in harmony. WCS is committed to this mission because it is essential to the integrity of life on Earth. Visit: www.wcs.org

Special Note to the Media: If you would like to guide your readers or viewers to a Web link where they can make donations in support of helping save wildlife and wild places, please direct them to wcs.org.

Stephen Sautner | Newswise Science News
Further information:
http://www.wcs.org
http://www.macfound.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts

08.12.2016 | Power and Electrical Engineering

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>