Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds marine protected areas inadequate for protecting fish and ocean ecology

29.08.2014

A new study reports that an expansion of marine protected areas is needed to protect fish species that perform key ecological functions. According to investigators from the Wildlife Conservation Society and other organizations, previous efforts at protecting fish have focused on saving the largest numbers of species, often at the expense of those species that provide key and difficult-to-replace ecological functions.

Many vital ecological functions of ocean ecology are performed by fish species that also are food for millions of people. This study uncovers a significant problem: the world's most ecologically valuable fish communities are currently vulnerable and are being missed by the world's current network of marine protected areas.


A school of common bluestripe snappers in the waters off Kenya. A new study conducted by the Wildlife Conservation Society and other organizations reports that further expansion of marine protected areas is needed to protect fish species playing key ecological functions.

Credit: Tim McClanahan

If these tropical fish populations and the ecological services that they provide are to be ensured, say the authors, then the world's existing marine protected area network must be expanded. The paper appears in the current online edition of Ecology Letters.

"The recognition that all species are not the same and that some play more important and different roles in ocean ecology prompted this new investigation. The study was expected to identify regions with vulnerable fish populations, something that has been sidetracked by the past species richness focus," said Dr. Tim McClanahan, WCS Senior Conservationist and a co-author of the study.

... more about:
»Conservation »Ecologie »Marine »Ocean »Wildlife »species

"If you lose species with key functions, then you undermine the ability of the ocean to provide food and other ecological services, which is a wake up call to protect these vulnerable species and locations. Our analysis identifies these gaps and should provide the basis to accelerate the protection of ocean functions."

The authors of the study compiled a global database on tropical coastal fish populations from 169 locations around the world, focusing on species occurring in 50 meters of water or less. The team compared these data with distribution maps for 6,316 tropical reef fish species. Human threats such as fishing, pollution, and climate change were also included in the analyses.

What the authors found was that many areas with threatened but functionally important fish were found outside of existing marine protected areas. Also, the study examined other vulnerabilities such as taxonomic sensitivity (the number of threatened species in a fish assemblage or community) and functional sensitivity (the number of functions in danger of being lost because of external threats).

From a regional perspective, the analysis revealed that species richness "hotspots" are located in the Indo-Australian Archipelago and the Caribbean. Species-rich areas for short-ranged fish were located in peripheral zones in the Atlantic as well as the Indo-Pacific.

Areas of high vulnerability included the coastal waters of Chile, the eastern tropical Pacific, and the eastern Atlantic Ocean, areas where comparatively few fish species perform vital environmental functions with few or no redundancies or species that fill similar roles.

"Protecting the ecological services that fish populations provide for coastal habitats is as important as protecting wildlife species themselves," said Dr. Caleb McClennen, Executive Director of WCS's Marine Program. "This decision theory framework can help marine managers make recommendations about where to place marine protected areas that expand and protect the ocean's ability to provide key services."

###

The authors of the study are: Valeriano Parravicini of the Institut de Recherche pour le Développement, Domaine du Petit Arbois, and the University of Perpignan; Sébastian Villéger of the Laboratoire Ecologie des Systèmes Marins Côtiers; Tim McClanahan of the Wildlife Conservation Society; Jesus Ernesto Arias-González of the Laboratorio de Ecología de Ecosistemas de Arrecifes Carolinos; David R. Bellwood of James Cook University; Jonathan Belmaker of Tel Aviv University; Pascale Chabanet of the Institut de Recherche pour le Développement; Sergio R. Floeter of the Universidade Federal de Santa Catarina; Alan M. Friedlander of the University of Hawaii at Manoa; François Guilhaumon of the Laboratoire Ecologie des Systèmes Marins Côtiers; Laurent Vigliola of the Institut de Recherche pour le Développement; Michel Kulbicki of the Institut de Recherche pour le Développement; and David Mouillot of the Laboratoire Ecologie des Systèmes Marins Côtiers and James Cook University.

John Delaney | Eurek Alert!
Further information:
http://www.wcs.org/

Further reports about: Conservation Ecologie Marine Ocean Wildlife species

More articles from Ecology, The Environment and Conservation:

nachricht The causes of soil consumption
14.06.2016 | Schweizerischer Nationalfonds SNF

nachricht Fishing prohibitions produce more sharks along with problems for fishing communities
09.06.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>