Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds marine protected areas inadequate for protecting fish and ocean ecology

29.08.2014

A new study reports that an expansion of marine protected areas is needed to protect fish species that perform key ecological functions. According to investigators from the Wildlife Conservation Society and other organizations, previous efforts at protecting fish have focused on saving the largest numbers of species, often at the expense of those species that provide key and difficult-to-replace ecological functions.

Many vital ecological functions of ocean ecology are performed by fish species that also are food for millions of people. This study uncovers a significant problem: the world's most ecologically valuable fish communities are currently vulnerable and are being missed by the world's current network of marine protected areas.


A school of common bluestripe snappers in the waters off Kenya. A new study conducted by the Wildlife Conservation Society and other organizations reports that further expansion of marine protected areas is needed to protect fish species playing key ecological functions.

Credit: Tim McClanahan

If these tropical fish populations and the ecological services that they provide are to be ensured, say the authors, then the world's existing marine protected area network must be expanded. The paper appears in the current online edition of Ecology Letters.

"The recognition that all species are not the same and that some play more important and different roles in ocean ecology prompted this new investigation. The study was expected to identify regions with vulnerable fish populations, something that has been sidetracked by the past species richness focus," said Dr. Tim McClanahan, WCS Senior Conservationist and a co-author of the study.

... more about:
»Conservation »Ecologie »Marine »Ocean »Wildlife »species

"If you lose species with key functions, then you undermine the ability of the ocean to provide food and other ecological services, which is a wake up call to protect these vulnerable species and locations. Our analysis identifies these gaps and should provide the basis to accelerate the protection of ocean functions."

The authors of the study compiled a global database on tropical coastal fish populations from 169 locations around the world, focusing on species occurring in 50 meters of water or less. The team compared these data with distribution maps for 6,316 tropical reef fish species. Human threats such as fishing, pollution, and climate change were also included in the analyses.

What the authors found was that many areas with threatened but functionally important fish were found outside of existing marine protected areas. Also, the study examined other vulnerabilities such as taxonomic sensitivity (the number of threatened species in a fish assemblage or community) and functional sensitivity (the number of functions in danger of being lost because of external threats).

From a regional perspective, the analysis revealed that species richness "hotspots" are located in the Indo-Australian Archipelago and the Caribbean. Species-rich areas for short-ranged fish were located in peripheral zones in the Atlantic as well as the Indo-Pacific.

Areas of high vulnerability included the coastal waters of Chile, the eastern tropical Pacific, and the eastern Atlantic Ocean, areas where comparatively few fish species perform vital environmental functions with few or no redundancies or species that fill similar roles.

"Protecting the ecological services that fish populations provide for coastal habitats is as important as protecting wildlife species themselves," said Dr. Caleb McClennen, Executive Director of WCS's Marine Program. "This decision theory framework can help marine managers make recommendations about where to place marine protected areas that expand and protect the ocean's ability to provide key services."

###

The authors of the study are: Valeriano Parravicini of the Institut de Recherche pour le Développement, Domaine du Petit Arbois, and the University of Perpignan; Sébastian Villéger of the Laboratoire Ecologie des Systèmes Marins Côtiers; Tim McClanahan of the Wildlife Conservation Society; Jesus Ernesto Arias-González of the Laboratorio de Ecología de Ecosistemas de Arrecifes Carolinos; David R. Bellwood of James Cook University; Jonathan Belmaker of Tel Aviv University; Pascale Chabanet of the Institut de Recherche pour le Développement; Sergio R. Floeter of the Universidade Federal de Santa Catarina; Alan M. Friedlander of the University of Hawaii at Manoa; François Guilhaumon of the Laboratoire Ecologie des Systèmes Marins Côtiers; Laurent Vigliola of the Institut de Recherche pour le Développement; Michel Kulbicki of the Institut de Recherche pour le Développement; and David Mouillot of the Laboratoire Ecologie des Systèmes Marins Côtiers and James Cook University.

John Delaney | Eurek Alert!
Further information:
http://www.wcs.org/

Further reports about: Conservation Ecologie Marine Ocean Wildlife species

More articles from Ecology, The Environment and Conservation:

nachricht How nanoparticles flow through the environment
12.05.2016 | Schweizerischer Nationalfonds SNF

nachricht Protecting fisheries from evolutionary change
27.04.2016 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

LZH shows the potential of the laser for industrial manufacturing at the LASYS 2016

25.05.2016 | Trade Fair News

Great apes communicate cooperatively

25.05.2016 | Life Sciences

Thermo-Optical Measuring method (TOM) could save several million tons of CO2 in coal-fired plants

25.05.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>