Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds hemlock trees dying rapidly, affecting forest carbon cycle

02.03.2009
New research by U.S. Forest Service Southern Research Station (SRS) scientists and partners suggests the hemlock woolly adelgid is killing hemlock trees faster than expected in the southern Appalachians and rapidly altering the carbon cycle of these forests. SRS researchers and cooperators from the University of Georgia published the findings in the most recent issue of the journal Ecosystems.

"The study marks the first time that scientists have tracked the short-term effects hemlock woolly adelgid infestations are having on the forest carbon cycle," said Chelcy Ford, SRS ecologist and co-author of the paper.

Eastern hemlock, a keystone species in the streamside forests of the southern Appalachian region, is already experiencing widespread decline and mortality because of hemlock woolly adelgid (a tiny nonnative insect) infestation. The pest has the potential to kill most of the region's hemlock trees within the next decade. As a native evergreen capable of maintaining year-round transpiration rates, hemlock plays an important role in the ecology and hydrology of mountain ecosystems. Hemlock forests provide critical habitat for birds and other animals; their shade helps maintain the cool water temperatures required by trout and other aquatic organisms in mountain streams.

Scientists conducted the study in mixed hardwood forests along the edges of two streams at the SRS Coweeta Hydrologic Laboratory, a 5,600-acre research facility and experimental forest in the Nantahala Mountain Range of western North Carolina.

Researchers compared rates of decline of adelgid-infested hemlock trees to a small number of girdled (severely wounded the bark of a tree to initiate tree mortality) trees that were not infested. Researchers tracked changes in the carbon cycle of these hemlock stands over a 3-year period. Scientists measured components of the forest carbon cycle – including tree growth, leaf litter and fine root biomass, and soil respiration – over the 3-year period.

"While we expected that girdled trees would decline quickly, we were surprised to find that hemlock declines just as quickly from adelgid infestation," said Ford. "This research shows that hemlock woolly adelgid infestation is rapidly impacting the carbon cycle in these tree stands. The study also supports the widely held belief that adelgid-infested hemlock trees in the South are declining much faster than the reported 9-year decline of some infested hemlock trees in the Northeast."

The study showed, among other things, that very fine roots in the girdled and hemlock woolly adelgid-infested plots declined by 38 percent and 22 percent, respectively, during the 3-year period. In addition, in the first year after girdling and infestation, researchers found soil respiration was approximately 20 percent lower than they expected.

The authors suggest that infrequent frigid winter temperatures in the southern Appalachians may not be enough to suppress adelgid populations. The authors believe this could be one explanation of why infested hemlocks appear to be declining faster in the South than in the Northeast. The authors also point out that other tree species are quick to occupy the space given up by their dying hemlock neighbors.

"Perhaps because of increased light in the canopy and reduced competition for soil nutrients and water, other species are already increasing their growth," said Ford. "We'll continue to monitor this, but, it's still too early to predict just how different these forests will look 50 or 100 years from now."

Stevin Westcott | EurekAlert!
Further information:
http://www.fs.fed.us
http://www.srs.fs.usda.gov/pubs/ja/ja_nuckolls001.pdf

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>