Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Climate Change Accelerates Hybridization Between Native, Invasive Trout

28.05.2014

A new article by researchers from the University of Montana, the U.S. Geological Survey and Montana Fish, Wildlife & Parks asserts that climate warming is increasing the hybridization of trout – interbreeding between native and non-native species – in the interior western United States.

Clint Muhlfeld, a research assistant professor in the UM Division of Biological Sciences’ Flathead Lake Biological Station and research ecologist with the USGS Northern Rocky Mountain Science Center in Glacier National Park, is the lead author of the article, titled “Invasive hybridization in a threatened species is accelerated by climate change,” which was published in the latest issue of Nature Climate Change. Co-authors are Ryan Kovach, a postdoctoral scholar at UM’s Flathead Lake Biological Station, and Leslie Jones, a UM doctoral student who works with Muhlfeld and USGS.

Specifically, rapid increases in stream temperature and decreases in spring flow over the past several decades contributed to the spread of hybridization between native westslope cutthroat trout and the introduced rainbow trout – the world’s most widely introduced invasive fish – across the Flathead River system in Montana and British Columbia, Canada.

Experts have hypothesized that climate change could decrease worldwide biodiversity through cross-breeding between invasive and native species, but this study is the first to directly and scientifically support this prediction. The study was based on 30 years of research by scientists with UM, USGS and Montana FWP.

Hybridization has contributed to the decline and extinction of many native fishes worldwide, including all subspecies of cutthroat trout in western North America, which have enormous ecological and socioeconomic value. The researchers used long-term genetic monitoring data coupled with high-resolution climate and stream temperature predictions to measure whether climate warming enhances interactions between native and non-native species through hybridization.

“Climatic changes are threatening highly prized native trout as introduced rainbow trout continue to expand their range and hybridize with native populations through climate-induced ‘windows of opportunity,’ putting many populations and species at greater risk than previously thought,” Muhlfeld said.

“The study illustrates that protecting genetic integrity and diversity of native species will be incredibly challenging when species are threatened with climate-induced invasive hybridization,” he said.

Westslope cutthroat trout and rainbow trout both spawn in the spring and can produce fertile offspring when they interbreed. Over time, a mating population of native and non-native fish will result in only hybrid individuals with substantially reduced fitness because their genomes have been altered by non-native genes that are maladapted to the local environment. Protecting and maintaining the genetic integrity of native species is important for a species’ ability to be resilient and better adapt to a rapidly changing climate.

Historical genetic samples revealed that hybridization between the two species was largely confined to one downstream Flathead River population. However, the study noted, during the past 30 years, hybridization rapidly spread upstream, irreversibly reducing the genetic integrity of native westslope cutthroat trout populations. Genetically pure populations of westslope cutthroat trout are known to occupy less than 10 percent of their historical range.

The rapid increase in hybridization was associated with climatic changes in the region. From 1978 to 2008, the rate of warming nearly tripled in the Flathead basin, resulting in earlier spring runoff, lower spring flooding and flows, and warming summer stream temperatures. Those locations with the greatest changes in stream flow and temperature experienced the greatest increases in hybridization.

Relative to cutthroat trout, rainbow trout prefer these climate-induced changes and tolerate greater environmental disturbance. These conditions likely have enhanced rainbow trout spawning and population numbers, leading to massive expansion of hybridization with westslope cutthroat trout.

“The evolutionary consequences of climate change are one of our greatest areas of uncertainty because empirical data addressing this issue are extraordinarily rare,” Kovach said. “This study is a tremendous step forward in our understanding of how climate change can influence evolutionary process and ultimately species biodiversity.”

Overall, aquatic ecosystems in western North America are predicted to experience earlier snowmelt in the spring, reduced late spring and summer flows, warmer and drier summers, and increased water temperatures – all of which indicate increased hybridization between these species.

Additional UM-affiliated authors are UM Wildlife Biology Program Director Winsor Lowe, UM Associate Professor of Conservation Ecology Gordon Luikart and Regents Professor Emeritus Fred Allendorf. Authors not affiliated with UM are Robert Al-Chokhachy with the USGS Northern Rocky Mountain Science Center, Matthew Boyer with Montana FWP in Kalispell and Robb Leary with Montana FWP in Missoula.

The study was supported by the Great Northern Landscape Conservation Cooperative, the U.S. Department of the Interior’s Northwest Climate Science Center, the National Climate Change and Wildlife Science Center, the National Science Foundation and Bonneville Power Administration.

The article can be viewed online at http://dx.doi.org/10.1038/nclimate2252. For more information call Muhlfeld at 406-600-9686 or email cmuhlfeld@usgs.gov.

Contact:
Clint Muhlfeld, research assistant professor, UM Division of Biological Sciences, 406-600-9686, cmuhlfeld@usgs.gov .

Clint Muhlfeld | Eurek Alert!
Further information:
http://news.umt.edu/2014/05/052614clim.aspx

Further reports about: Change Climate Montana Mountain USGS Wildlife hybridization invasive non-native populations species spring temperature

More articles from Ecology, The Environment and Conservation:

nachricht Managing an endangered river across the US-Mexico border
18.07.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht The European pet trade is jeopardising the survival of rare reptile species
13.07.2016 | Helmholtz-Zentrum für Umweltforschung - UFZ

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New movie screen allows for glasses-free 3-D

26.07.2016 | Information Technology

Scientists develop painless and inexpensive microneedle system to monitor drugs

26.07.2016 | Health and Medicine

Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'

26.07.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>