Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Finds Climate Change Accelerates Hybridization Between Native, Invasive Trout

28.05.2014

A new article by researchers from the University of Montana, the U.S. Geological Survey and Montana Fish, Wildlife & Parks asserts that climate warming is increasing the hybridization of trout – interbreeding between native and non-native species – in the interior western United States.

Clint Muhlfeld, a research assistant professor in the UM Division of Biological Sciences’ Flathead Lake Biological Station and research ecologist with the USGS Northern Rocky Mountain Science Center in Glacier National Park, is the lead author of the article, titled “Invasive hybridization in a threatened species is accelerated by climate change,” which was published in the latest issue of Nature Climate Change. Co-authors are Ryan Kovach, a postdoctoral scholar at UM’s Flathead Lake Biological Station, and Leslie Jones, a UM doctoral student who works with Muhlfeld and USGS.

Specifically, rapid increases in stream temperature and decreases in spring flow over the past several decades contributed to the spread of hybridization between native westslope cutthroat trout and the introduced rainbow trout – the world’s most widely introduced invasive fish – across the Flathead River system in Montana and British Columbia, Canada.

Experts have hypothesized that climate change could decrease worldwide biodiversity through cross-breeding between invasive and native species, but this study is the first to directly and scientifically support this prediction. The study was based on 30 years of research by scientists with UM, USGS and Montana FWP.

Hybridization has contributed to the decline and extinction of many native fishes worldwide, including all subspecies of cutthroat trout in western North America, which have enormous ecological and socioeconomic value. The researchers used long-term genetic monitoring data coupled with high-resolution climate and stream temperature predictions to measure whether climate warming enhances interactions between native and non-native species through hybridization.

“Climatic changes are threatening highly prized native trout as introduced rainbow trout continue to expand their range and hybridize with native populations through climate-induced ‘windows of opportunity,’ putting many populations and species at greater risk than previously thought,” Muhlfeld said.

“The study illustrates that protecting genetic integrity and diversity of native species will be incredibly challenging when species are threatened with climate-induced invasive hybridization,” he said.

Westslope cutthroat trout and rainbow trout both spawn in the spring and can produce fertile offspring when they interbreed. Over time, a mating population of native and non-native fish will result in only hybrid individuals with substantially reduced fitness because their genomes have been altered by non-native genes that are maladapted to the local environment. Protecting and maintaining the genetic integrity of native species is important for a species’ ability to be resilient and better adapt to a rapidly changing climate.

Historical genetic samples revealed that hybridization between the two species was largely confined to one downstream Flathead River population. However, the study noted, during the past 30 years, hybridization rapidly spread upstream, irreversibly reducing the genetic integrity of native westslope cutthroat trout populations. Genetically pure populations of westslope cutthroat trout are known to occupy less than 10 percent of their historical range.

The rapid increase in hybridization was associated with climatic changes in the region. From 1978 to 2008, the rate of warming nearly tripled in the Flathead basin, resulting in earlier spring runoff, lower spring flooding and flows, and warming summer stream temperatures. Those locations with the greatest changes in stream flow and temperature experienced the greatest increases in hybridization.

Relative to cutthroat trout, rainbow trout prefer these climate-induced changes and tolerate greater environmental disturbance. These conditions likely have enhanced rainbow trout spawning and population numbers, leading to massive expansion of hybridization with westslope cutthroat trout.

“The evolutionary consequences of climate change are one of our greatest areas of uncertainty because empirical data addressing this issue are extraordinarily rare,” Kovach said. “This study is a tremendous step forward in our understanding of how climate change can influence evolutionary process and ultimately species biodiversity.”

Overall, aquatic ecosystems in western North America are predicted to experience earlier snowmelt in the spring, reduced late spring and summer flows, warmer and drier summers, and increased water temperatures – all of which indicate increased hybridization between these species.

Additional UM-affiliated authors are UM Wildlife Biology Program Director Winsor Lowe, UM Associate Professor of Conservation Ecology Gordon Luikart and Regents Professor Emeritus Fred Allendorf. Authors not affiliated with UM are Robert Al-Chokhachy with the USGS Northern Rocky Mountain Science Center, Matthew Boyer with Montana FWP in Kalispell and Robb Leary with Montana FWP in Missoula.

The study was supported by the Great Northern Landscape Conservation Cooperative, the U.S. Department of the Interior’s Northwest Climate Science Center, the National Climate Change and Wildlife Science Center, the National Science Foundation and Bonneville Power Administration.

The article can be viewed online at http://dx.doi.org/10.1038/nclimate2252. For more information call Muhlfeld at 406-600-9686 or email cmuhlfeld@usgs.gov.

Contact:
Clint Muhlfeld, research assistant professor, UM Division of Biological Sciences, 406-600-9686, cmuhlfeld@usgs.gov .

Clint Muhlfeld | Eurek Alert!
Further information:
http://news.umt.edu/2014/05/052614clim.aspx

Further reports about: Change Climate Montana Mountain USGS Wildlife hybridization invasive non-native populations species spring temperature

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>