Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study examines how ocean energy impacts life in the deep sea

06.09.2012
Results will help scientists understand what to expect under future climate change

A new study of deep-sea species across the globe aims to understand how natural gradients in food and temperature in the dark, frigid waters of the deep sea affect the snails, clams, and other creatures that live there.


This shows assorted invertebrates on the seafloor off of Central California (Tiburon Dive# 606; Lat= 37.4; Lon= -123.3; Depth= 1949.8 m).

Credit: Courtesy of the Monterey Bay Aquarium Research Institute (MBARI) (c) 2003

Similar studies have been conducted for animals in the shallow oceans, but our understanding of the impact of food and temperature on life in the deep sea — the Earth's largest and most remote ecosystem — has been more limited.

The results will help scientists understand what to expect in the deep sea under future climate change, the researchers say. "Our findings indicate that the deep sea, once thought remote and buffered against climatic change, may function quite differently in the future," they write.

All living things need energy in the form of food, heat and light to survive, grow, and reproduce. But for life in the deep sea — defined as anything beyond 600 feet (200 m) — energy of any kind is in short supply. Descend more than a few hundred feet beneath the ocean surface, and you'll find a blue-black world of near-freezing temperatures, and little or no light.

Because so little of the sun's light penetrates the surface waters, there are no plants for animals to eat. Most deep-sea animals feed on tiny particles of dead and decaying organic matter drifting down from the sunlit waters above. It is estimated that less than 1% of the food at the surface reaches the ocean's watery depths.

The researchers wanted to know what this energy deprivation means for deep sea habitats across the globe, and for the animals that live there. "How much of the differences that we see across different groups of deep-sea animals in terms of growth, or lifespan, or the number of species, are related to differences in the temperature or amount of food where they occur?" said co-author Craig McClain of the National Evolutionary Synthesis Center in Durham, North Carolina.

To find out, the researchers compiled previously published data for hundreds of deep-sea species across the globe, ranging from crabs and snails to fish and tube worms. The data included parameters like metabolic rate, lifespan, growth, biomass, abundance, size and diversity.

The results suggest that the relative importance of the two basic forms of energy available in the deep sea — food and warmth — vary considerably, said co-author Michael Rex at the University of Massachusetts in Boston.

Temperature has the biggest impact on parameters at the individual level, such as metabolism and growth rate. For example, deep sea animals living in warmer waters tend to have faster metabolisms.

But for higher-level parameters such as abundance or species diversity, food is more important. Generally speaking, food-rich areas tend to have animals that are bigger, more abundant and more diverse.

The results add to the growing body of evidence that the deep sea isn't isolated from the effects of climate change, the researchers say.

"The oceans are getting warmer and they're producing less food," McClain said. Warmer water in the deep sea due to climate change could mean faster growth and metabolism for the animals that live there, but that could be bad news if the oceans produce less food to support them.

"The news is not good," Rex added. "Changes in temperature and food availability associated with climate change could cause widespread extinction in the deep ocean if environmental changes occur faster than deep-sea organisms can respond by shifting their ranges or adapting to new conditions."

The study was published online in the September 4, 2012 issue of Proceedings of the National Academy of Sciences.

Other authors of the study were Andrew Allen of Macquarie University in Australia, and Derek Tittensor of the United Nations Environment Programme World Conservation Monitoring Centre in the United Kingdom.

CITATION: McClain, C., A. Allen, et al. (2012). "The energetics of life on the deep sea floor." PNAS. http://dx.doi.org/10.1073/pnas.1208976109

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>