Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study examines how ocean energy impacts life in the deep sea

06.09.2012
Results will help scientists understand what to expect under future climate change

A new study of deep-sea species across the globe aims to understand how natural gradients in food and temperature in the dark, frigid waters of the deep sea affect the snails, clams, and other creatures that live there.


This shows assorted invertebrates on the seafloor off of Central California (Tiburon Dive# 606; Lat= 37.4; Lon= -123.3; Depth= 1949.8 m).

Credit: Courtesy of the Monterey Bay Aquarium Research Institute (MBARI) (c) 2003

Similar studies have been conducted for animals in the shallow oceans, but our understanding of the impact of food and temperature on life in the deep sea — the Earth's largest and most remote ecosystem — has been more limited.

The results will help scientists understand what to expect in the deep sea under future climate change, the researchers say. "Our findings indicate that the deep sea, once thought remote and buffered against climatic change, may function quite differently in the future," they write.

All living things need energy in the form of food, heat and light to survive, grow, and reproduce. But for life in the deep sea — defined as anything beyond 600 feet (200 m) — energy of any kind is in short supply. Descend more than a few hundred feet beneath the ocean surface, and you'll find a blue-black world of near-freezing temperatures, and little or no light.

Because so little of the sun's light penetrates the surface waters, there are no plants for animals to eat. Most deep-sea animals feed on tiny particles of dead and decaying organic matter drifting down from the sunlit waters above. It is estimated that less than 1% of the food at the surface reaches the ocean's watery depths.

The researchers wanted to know what this energy deprivation means for deep sea habitats across the globe, and for the animals that live there. "How much of the differences that we see across different groups of deep-sea animals in terms of growth, or lifespan, or the number of species, are related to differences in the temperature or amount of food where they occur?" said co-author Craig McClain of the National Evolutionary Synthesis Center in Durham, North Carolina.

To find out, the researchers compiled previously published data for hundreds of deep-sea species across the globe, ranging from crabs and snails to fish and tube worms. The data included parameters like metabolic rate, lifespan, growth, biomass, abundance, size and diversity.

The results suggest that the relative importance of the two basic forms of energy available in the deep sea — food and warmth — vary considerably, said co-author Michael Rex at the University of Massachusetts in Boston.

Temperature has the biggest impact on parameters at the individual level, such as metabolism and growth rate. For example, deep sea animals living in warmer waters tend to have faster metabolisms.

But for higher-level parameters such as abundance or species diversity, food is more important. Generally speaking, food-rich areas tend to have animals that are bigger, more abundant and more diverse.

The results add to the growing body of evidence that the deep sea isn't isolated from the effects of climate change, the researchers say.

"The oceans are getting warmer and they're producing less food," McClain said. Warmer water in the deep sea due to climate change could mean faster growth and metabolism for the animals that live there, but that could be bad news if the oceans produce less food to support them.

"The news is not good," Rex added. "Changes in temperature and food availability associated with climate change could cause widespread extinction in the deep ocean if environmental changes occur faster than deep-sea organisms can respond by shifting their ranges or adapting to new conditions."

The study was published online in the September 4, 2012 issue of Proceedings of the National Academy of Sciences.

Other authors of the study were Andrew Allen of Macquarie University in Australia, and Derek Tittensor of the United Nations Environment Programme World Conservation Monitoring Centre in the United Kingdom.

CITATION: McClain, C., A. Allen, et al. (2012). "The energetics of life on the deep sea floor." PNAS. http://dx.doi.org/10.1073/pnas.1208976109

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>