Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study evaluates impact of land use activity in the Amazon basin

19.01.2012
Highlights signs of transition to a disturbance-dominated regime

A new paper published today in Nature reveals that human land use activity has begun to change the regional water and energy cycles - the interplay of air coming in from the Atlantic Ocean, water transpiration by the forest, and solar radiation - of parts of the Amazon basin.

In addition, it shows that ongoing interactions between deforestation, fire, and climate change have the potential to alter carbon storage, rainfall patterns and river discharge on an even larger basin-wide scale.

The research was led by the Woods Hole Research Center (WHRC). Lead scientist Eric Davidson (WHRC) and 13 Brazilian and US colleagues from universities, government and the NGOs, all of whom participated in the Large-Scale Biosphere-Atmosphere Experiment in the Amazon (LBA), produced a framework by which the connections among climate change, agricultural expansion, logging, and fire risk can be evaluated.

The framework considers changes in greenhouse-gas emissions, and energy and water cycles. Using it they found signs of transition to a disturbance-dominated regime in the southern and eastern portions of the Amazon basin. Co-author Jennifer K. Balch adds: “One strong sign of a new disturbance regime is the high number of recent large-scale wildfires, which are a by-product of intentional fires in Brazil’s ‘arc of deforestation.’” She emphasizes that these fires “are extremely frequent, occurring every few years, compared with every couple centuries in the past.”

Why is this important? Humans have been part of the Amazon basin forest-river system for thousands of years, but the expansion and intensification of agriculture, logging and urban development, and their synergistic impacts are beginning to stress the natural integrity of the ecosystem. Since the Amazon River produces about 20% of the world’s fresh water discharge and the Amazon forest holds about 100 billion tones of carbon (10 years’ worth of global fossil fuel emissions), it is important that economic development in the region proceed along sustainable paths that do not degrade the ecosystem services provided to local, regional and global communities by the forests and rivers of the region. “The studies in this review, document changes in river flow, sedimentation in rivers, and lengthening of the dry season in the southern and eastern flanks of the Amazon Basin,” notes Dr. Davidson. “Whether similar changes are likely to occur in other parts of the basin will depend on the interplay of management decisions and the impacts of climate change during the next few years and decades.”

The project showed that the Amazon forest is resilient to considerable climatic variation from year to year, but that this resilience can be exceeded by severe or prolonged drought. The evidence points to a system in biophysical transition, highlighting the need for improved understanding of the trade-offs among land cover, carbon stocks, water resources, habitat conservation, human health, and economic development in future scenarios of climate change and land-use change.

Efforts in Brazil to curb deforestation have led to a significant decline in the clearing of forests in the Amazon basin, from nearly 28,000 km2 per year in 2004 to less than 7,000 km2 in 2010, but at the same time, the incidence of fire has not decreased, indicating continued risks for forest degradation through climate-fire interactions.

With Brazil poised to become a major economic power, the study emphasizes that improvements in scientific and technological capacity, and human resources will be required to guide and manage future sustainable development in the region.

The Woods Hole Research Center addresses the great issues for a healthy planet through science, education, and policy. We combine satellite remote sensing with field research to study, model, map, and monitor Earth's chemistry and ecology, and we use this knowledge to address the planet's great issues. We work around the Earth, from local to global scales, including the Amazon and Cerrado of South America, the Congo Basin and East Africa, the high latitudes of North America and northern Eurasia, and across the United States. We are unique in the depth of our science capability in combination with our commitment to the environment.

Ian Vorster | EurekAlert!
Further information:
http://www.whrc.org
http://whrc.org/news/pressroom/PR-2012-Davidson-Nature.html

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>