Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Confirms Amphibians’ Ability to Predict Changes in Biodiversity

30.10.2008
Biologists have long suspected that amphibians, whose moist permeable skins make them susceptible to slight changes in the environment, might be good bellwethers for impending alterations in biodiversity during rapid climate change.

Now two University of California biologists have verified the predictive power of this sensitive group of animals in a global study of species turnover among amphibians and birds. The study appears this week in the advance online version of the journal Proceedings of the National Academy of Sciences.

“Our study supports the role of amphibians as ‘canaries in the coal mine’,” said Lauren Buckley, a postdoctoral fellow at UC Santa Barbara's National Center for Ecological Analysis and Synthesis and the first author of the study. “Amphibians are likely to be the first to respond to environmental changes and their responses can forecast how other species will respond.”

“Amphibians are much more tuned in to the changes in their specific environments,” said Walter Jetz, an associate professor of biology at UC San Diego and the other author of the study. “They are much more sensitive to differences in environmental conditions as you move geographically from one location to another.”

The two scientists used maps of the environment and amphibian and bird distributions to answer the question of how the environment—as well as the distribution of birds and amphibians—changes as one moves from one place to another around the globe.

The researchers found that if the environment changes rapidly as one travels from one location to another, the amphibian and bird communities also change rapidly. However, the species of amphibians would change more quickly than species of birds. This confirms that amphibians are particularly sensitive to changes in the environment, the researchers conclude, and that this sensitivity is particularly acute given their narrow distributions.

Whether one is traveling through a tropical or temperature region also influences how quickly the types of animals change. Given a mountain of a certain size, the researchers found, the amphibian and bird communities change more quickly if one is climbing a mountain in the tropics than in a temperate region.

“There are more species in the tropics and the species are generally more specially adapted to particular environmental conditions,” said Jetz. “This suggests that tropical species may be more severely impacted by a given temperature increase as a result of climate change.”

For the study, he and Buckley produced a series of global maps of environmental turnover and the associated changes in amphibian and bird communities that reveal that the identities of birds and amphibians change particularly quickly in mountainous regions such as the Andes and Himalayas.

“Understanding how environmental changes over space influence biodiversity patterns provides important background for forecasting how biodiversity will respond to environmental changes over time such as ongoing temperature increases,” said Buckley.

The study was supported by grants from the National Science Foundation, UC Santa Barbara and the State of California.

Comment:
Walter Jetz, UC San Diego (858) 822-6731, wjetz@ucsd.edu
Lauren Buckley, UC Santa Barbara (805) 892-2512 buckley@nceas.ucsb.edu

Kim McDonald | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>