Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Confirms Amphibians’ Ability to Predict Changes in Biodiversity

30.10.2008
Biologists have long suspected that amphibians, whose moist permeable skins make them susceptible to slight changes in the environment, might be good bellwethers for impending alterations in biodiversity during rapid climate change.

Now two University of California biologists have verified the predictive power of this sensitive group of animals in a global study of species turnover among amphibians and birds. The study appears this week in the advance online version of the journal Proceedings of the National Academy of Sciences.

“Our study supports the role of amphibians as ‘canaries in the coal mine’,” said Lauren Buckley, a postdoctoral fellow at UC Santa Barbara's National Center for Ecological Analysis and Synthesis and the first author of the study. “Amphibians are likely to be the first to respond to environmental changes and their responses can forecast how other species will respond.”

“Amphibians are much more tuned in to the changes in their specific environments,” said Walter Jetz, an associate professor of biology at UC San Diego and the other author of the study. “They are much more sensitive to differences in environmental conditions as you move geographically from one location to another.”

The two scientists used maps of the environment and amphibian and bird distributions to answer the question of how the environment—as well as the distribution of birds and amphibians—changes as one moves from one place to another around the globe.

The researchers found that if the environment changes rapidly as one travels from one location to another, the amphibian and bird communities also change rapidly. However, the species of amphibians would change more quickly than species of birds. This confirms that amphibians are particularly sensitive to changes in the environment, the researchers conclude, and that this sensitivity is particularly acute given their narrow distributions.

Whether one is traveling through a tropical or temperature region also influences how quickly the types of animals change. Given a mountain of a certain size, the researchers found, the amphibian and bird communities change more quickly if one is climbing a mountain in the tropics than in a temperate region.

“There are more species in the tropics and the species are generally more specially adapted to particular environmental conditions,” said Jetz. “This suggests that tropical species may be more severely impacted by a given temperature increase as a result of climate change.”

For the study, he and Buckley produced a series of global maps of environmental turnover and the associated changes in amphibian and bird communities that reveal that the identities of birds and amphibians change particularly quickly in mountainous regions such as the Andes and Himalayas.

“Understanding how environmental changes over space influence biodiversity patterns provides important background for forecasting how biodiversity will respond to environmental changes over time such as ongoing temperature increases,” said Buckley.

The study was supported by grants from the National Science Foundation, UC Santa Barbara and the State of California.

Comment:
Walter Jetz, UC San Diego (858) 822-6731, wjetz@ucsd.edu
Lauren Buckley, UC Santa Barbara (805) 892-2512 buckley@nceas.ucsb.edu

Kim McDonald | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>