Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New study provides comprehensive view of the status of Atlantic bluefin tuna

12.12.2011
Overfishing in the Mediterranean Sea is felt in North American waters

A new model built around biological data from electronic tags, ear bone microchemistry and fisheries catch data for Atlantic bluefin tuna indicates fishing on one side of the Atlantic influences the other side.

Bluefin populations on both sides of the Atlantic Ocean have declined precipitously since 1950, according to the study published today in the peer-reviewed online journal PLoS ONE. The model estimates the number of Atlantic bluefin tuna remaining in the ocean and projects future population sizes based on alternative management scenarios.

The new model is revolutionary in its ability to account for population overlap (mixing) of this highly migratory animal on the North Atlantic foraging grounds.

Two or more Atlantic bluefin populations are currently recognized by ICCAT, the international commission charged with conserving highly migratory fishes like bluefin in the Atlantic. A western population spawns in the Gulf of Mexico and is primarily fished by North Americans, and an eastern population spawns in the Mediterranean Sea and is fished by European and North African fishers, along with high seas longliners from multiple nations.

The PLoS ONE study indicates that since 1950 adult bluefin tuna numbers have declined by as much as 83% in the Gulf of Mexico spawned western Atlantic population, and 67% in the Mediterranean spawned eastern Atlantic population.

This innovative model incorporates new biological data such as the extensive migrations recorded on electronic tags and the information on natal origin lodged like a birth certificate in the minerals of ear bones, in order to account for the intricate movements on a seasonal scale. Bluefin can live up to 35 years of age, and reach 1500 lbs in size. Tag tracking data indicate that individual bluefin can rapidly move between western and eastern management regions but then separate and return to distinct spawning areas.

The Mediterranean population was modeled with a significantly lower age to first reproduction or maturity than the Gulf of Mexico population, increasing the resilience of the former population. The combination of biological and mathematical inputs has shown a significant subsidy exists when the larger Mediterranean population moves into western waters to feed.

"Current population models assume that a fish caught in the West Atlantic was born in the west, and a fish caught in the east was born in the east," said senior author Dr. Murdoch McAllister of the University of British Columbia. "We now know that upwards of 50% of bluefin caught in some western fisheries were spawned in the Mediterranean, and incorrect assignment of these fish biases assessments and may compromise recovery efforts of this valuable species." High levels of fishing in the Mediterranean Sea, including pirate fishing, resulted in the highest fishing mortality on record for the species between 1998 and 2007. Importantly, the model shows that this egregious overfishing in the East depleted not just the eastern population but the western one as well. The eastern catch of bluefin tuna has been cut by approximately half since 2007 so this trend may reverse in the coming years.

The model estimates that eastern bluefin tuna can recover relatively quickly with perfect adherence to current regulations. However, significant illegal overfishing continues to be documented and threatens the recovery of fish in both the eastern and western Atlantic. Recovery of the depleted western Atlantic bluefin tuna population will take more than 15 years under current fishery regulations.

"This model presents a challenge to the global community responsible for the management of Atlantic bluefin tuna, both from a regulatory and scientific perspective," said senior author Dr. Barbara Block of Stanford University. "If regulations are not enforced, population recovery will stall. If we don't account for population overlap in assessments, the estimates upon which we base management will be flawed."

Funding for this study was provided by the Lenfest Ocean Program, Tag-A-Giant Foundation, the Canadian Fisheries and Oceans International Governance Strategies Fund, the Monterey Bay Aquarium Foundation, and the National Oceanographic and Atmospheric Administration.

For more information, visit www.tagagiant.org.

For information, contact

University of British Columbia: Murdoch McAllister, (604) 822-3693; m.mcallister@fisheries.ubc.ca

Stanford University: Barbara Block, (831) 655-6236; bblock@stanford.edu

Murdoch McAllister | EurekAlert!
Further information:
http://www.fisheries.ubc.ca
http://www.tagagiant.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>