Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Students Design Innovative Wastewater Treatment Process for Removing Pharmaceuticals

01.04.2010
Ryerson University Chemical Engineering students have discovered a potential solution to the rising levels of pharmaceuticals ending up in the water supply, particularly worrisome around hospitals and long-term care facilities, where pharmaceutical use is heavy.

The foursome has designed an advanced wastewater treatment system which would remove 90 per cent of pharmaceuticals and endocrine-disrupting compounds (EDCs) using commercially available technology. Currently no such sewage treatment plant exists in North America.

At a time when tap water is being hailed as the environmentally responsible choice over bottled water, the amount of pharmaceutical medications making their way into the water supply through improper disposal and bodily elimination warrants some concern. As part of their final-year undergraduate project, Kirill Cheiko, Reuben Fernandes, Charles Gilmour and Pawel Kita used research data from academic and industry sources to design an award-winning simulated wastewater treatment plant to deal with the potentially harmful waste.

“In Canada, the government doesn’t enforce the removal of pharmaceutical drugs and EDCs, including Bisphenol A, from wastewater. As a result, municipalities don’t currently pursue removal, since it would incur extra expense,” said Cheiko. “That said, it could also potentially reduce health-care costs.”

Many prescription and over-the-counter drugs are flushed down the toilet. Others cannot be fully metabolized by the body and are eliminated soon after administration. While the rate of elimination varies (at least five per cent of acetaminophen and up to 80 per cent of the antibiotic ciprofloxacin), the final result is the same: biologically resistant contaminants end up in municipal wastewater.

Eventually, those chemicals enter the environment and the drinking water supply. While there haven’t been any studies done to determine the long-term effects of these pharmaceuticals and EDCs on humans, concerns have nevertheless been raised. Even in trace amounts, for example, chemotherapy drugs can inhibit normal cell function; and pain-relievers and blood-pressure diuretics can lead to liver damage. Regarding reproduction and development, pharmaceuticals and EDCs have also been implicated in such conditions as polycystic ovarian syndrome and hypospadias (a birth defect involving the male urethra).

The students’ proposed innovative design uses two processes in combination, both using commercially available technology. First, wastewater is subjected to membrane biological reactors. This activity increases the amount of bacteria already present in the treatment process and makes them “hungrier.” From there, sewage goes through an advanced oxidization process. Typically used to treat drinking water, this process works in the same way as an antioxidant does in the body: it destroys harmful toxins. But whereas most wastewater treatment plants use chlorine as a disinfectant the students proposed using ultraviolet light (UV) and hydrogen peroxide for the purposes of advanced oxidation and disinfection. Normally, UV light would be unable to penetrate murky wastewater, but after undergoing the membrane biological reactor, liquid waste in the students’ simulated wastewater treatment plants would be clear enough to permit the use of UV light. Afterwards, the students concluded, the wastewater would be clean enough to go straight into lakes and rivers.

The students and faculty advisor Professor Manuel Alvarez Cuenca are seeking funding to test the proposal in Ryerson’s Laboratory of Water Treatment Technologies. They also recommend, however, that municipalities conduct their own research and set up pilot studies around the areas’ hospitals and long-term care facilities.

The price of not acting could be severe, warn the students. “The chronic effects on the human population are still unknown, but we are working with a cautionary principle,” says Fernandes. “It’s worth our time to work on this problem.”

The group’s project, Treating Pharmaceuticals and Endocrine Disruptors at the Source: An Advanced Wastewater Treatment Plant Design, placed 1st for Social Awareness and received an honourable mention for their innovative design of an advanced wastewater treatment plant at the 2010 Ontario Engineering Competition in Waterloo, Ontario.

Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers close to 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master’s and PhD students, nearly 2,700 tenured and tenure-track faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education.

Heather Kearney | Newswise Science News
Further information:
http://www.ryerson.ca

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>