Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Students Design Innovative Wastewater Treatment Process for Removing Pharmaceuticals

Ryerson University Chemical Engineering students have discovered a potential solution to the rising levels of pharmaceuticals ending up in the water supply, particularly worrisome around hospitals and long-term care facilities, where pharmaceutical use is heavy.

The foursome has designed an advanced wastewater treatment system which would remove 90 per cent of pharmaceuticals and endocrine-disrupting compounds (EDCs) using commercially available technology. Currently no such sewage treatment plant exists in North America.

At a time when tap water is being hailed as the environmentally responsible choice over bottled water, the amount of pharmaceutical medications making their way into the water supply through improper disposal and bodily elimination warrants some concern. As part of their final-year undergraduate project, Kirill Cheiko, Reuben Fernandes, Charles Gilmour and Pawel Kita used research data from academic and industry sources to design an award-winning simulated wastewater treatment plant to deal with the potentially harmful waste.

“In Canada, the government doesn’t enforce the removal of pharmaceutical drugs and EDCs, including Bisphenol A, from wastewater. As a result, municipalities don’t currently pursue removal, since it would incur extra expense,” said Cheiko. “That said, it could also potentially reduce health-care costs.”

Many prescription and over-the-counter drugs are flushed down the toilet. Others cannot be fully metabolized by the body and are eliminated soon after administration. While the rate of elimination varies (at least five per cent of acetaminophen and up to 80 per cent of the antibiotic ciprofloxacin), the final result is the same: biologically resistant contaminants end up in municipal wastewater.

Eventually, those chemicals enter the environment and the drinking water supply. While there haven’t been any studies done to determine the long-term effects of these pharmaceuticals and EDCs on humans, concerns have nevertheless been raised. Even in trace amounts, for example, chemotherapy drugs can inhibit normal cell function; and pain-relievers and blood-pressure diuretics can lead to liver damage. Regarding reproduction and development, pharmaceuticals and EDCs have also been implicated in such conditions as polycystic ovarian syndrome and hypospadias (a birth defect involving the male urethra).

The students’ proposed innovative design uses two processes in combination, both using commercially available technology. First, wastewater is subjected to membrane biological reactors. This activity increases the amount of bacteria already present in the treatment process and makes them “hungrier.” From there, sewage goes through an advanced oxidization process. Typically used to treat drinking water, this process works in the same way as an antioxidant does in the body: it destroys harmful toxins. But whereas most wastewater treatment plants use chlorine as a disinfectant the students proposed using ultraviolet light (UV) and hydrogen peroxide for the purposes of advanced oxidation and disinfection. Normally, UV light would be unable to penetrate murky wastewater, but after undergoing the membrane biological reactor, liquid waste in the students’ simulated wastewater treatment plants would be clear enough to permit the use of UV light. Afterwards, the students concluded, the wastewater would be clean enough to go straight into lakes and rivers.

The students and faculty advisor Professor Manuel Alvarez Cuenca are seeking funding to test the proposal in Ryerson’s Laboratory of Water Treatment Technologies. They also recommend, however, that municipalities conduct their own research and set up pilot studies around the areas’ hospitals and long-term care facilities.

The price of not acting could be severe, warn the students. “The chronic effects on the human population are still unknown, but we are working with a cautionary principle,” says Fernandes. “It’s worth our time to work on this problem.”

The group’s project, Treating Pharmaceuticals and Endocrine Disruptors at the Source: An Advanced Wastewater Treatment Plant Design, placed 1st for Social Awareness and received an honourable mention for their innovative design of an advanced wastewater treatment plant at the 2010 Ontario Engineering Competition in Waterloo, Ontario.

Ryerson University is Canada’s leader in innovative, career-oriented education and a university clearly on the move. With a mission to serve societal need, and a long-standing commitment to engaging its community, Ryerson offers close to 100 undergraduate and graduate programs. Distinctly urban, culturally diverse and inclusive, the university is home to 28,000 students, including 2,000 master’s and PhD students, nearly 2,700 tenured and tenure-track faculty and staff, and more than 130,000 alumni worldwide. Research at Ryerson is on a trajectory of success and growth: externally funded research has doubled in the past four years. The G. Raymond Chang School of Continuing Education is Canada's leading provider of university-based adult education.

Heather Kearney | Newswise Science News
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>