Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Student Researchers Transform Waste Plastic Into an Alternative Fuel

14.05.2010
Student researchers at Northeastern University have designed an apparatus to convert plastic waste into clean energy without releasing harmful emissions.

Under the leadership of Yiannis Levendis, distinguished professor of mechanical and industrial engineering, a team of undergraduate and graduate engineering students developed a waste combustor, which breaks down non-biodegradable plastics to create an alternative source of fuel.

Their prototype was featured at the fifth annual MIT Energy Conference this past March. The team worked for nine months on the research, which, for the undergraduates, was their senior capstone project.

Self-sustainability is the key to the double-tank combustor design. Plastic waste is first processed in an upper tank through pyrolysis, which converts solid plastic into gas. Next, the gas flows to a lower tank, where it is burned with oxidants to generate heat and steam. The heat sustains the combustor while the steam can be used to generate electric power.

“The prototype can be scaled up to drive a large power plant, which could connect to a plastic recycling center for a constant flow of fuel,” said David Laskowski, an undergraduate student working on the team.

Levendis, who has pursued research on the combustion of plastics and other post-consumer wastes for the past 20 years, is currently focusing on the concept of vaporizing solid plastic waste, which would reduce levels of harmful emissions during the combustion process.

“The inspiration behind my research is the quest to develop clean, cost-efficient power sources in the face of dwindling fossil fuel reserves,” Levendis said. “It will also help get rid of unsightly, non-biodegradable plastic waste that cannot be recycled.”

According to Laskowski, calculations show that the new technology has the potential of replacing up to 462 million gallons of petroleum in the United States alone, if all recycled plastics were to be processed.

“We are currently consuming highly-priced conventional premium fuels (to produce electricity). The fuel developed using this system will lower the cost of electricity for future generations,” Levendis said.

The team members included Jeff Young, Shane McElroy, Jason Lee and Paul Conroy, all senior undergraduate students; and Brendan Hall and Chuanwei Zhuo, who are graduate students.

With the success of their prototype, Hall and Zhuo plan to continue working with Levendis on further development of the project.

Jenny Eriksen | Newswise Science News
Further information:
http://www.neu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Joint research project on wastewater for reuse examines pond system in Namibia
19.12.2016 | Technische Universität Darmstadt

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>