Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Striking ecological impact on Canada's Arctic coastline linked to global climate change

17.05.2011
Scientists from Queen's and Carleton universities head a national multidisciplinary research team that has uncovered startling new evidence of the destructive impact of global climate change on North America's largest Arctic delta.

"One of the most ominous threats of global warming today is from rising sea levels, which can cause marine waters to inundate the land," says the team's co-leader, Queen's graduate student Joshua Thienpont. "The threat is especially acute in polar regions, where shrinking sea ice increases the risk of storm surges."


Dead vegetation killed by the 1999 storm surge is in stark contrast to the vegetation along the edges of waterways that receive regular freshwater (and thus survived the damage). Credit: Trevor Lantz, University of Victoria

By studying growth rings from coastal shrubs and lake sediments in the Mackenzie Delta region of the Northwest Territories – the scene of a widespread and ecologically destructive storm surge in 1999 – the researchers have discovered that the impact of these salt-water surges is unprecedented in the 1,000-year history of the lake.

"This had been predicted by all the models and now we have empirical evidence," says team co-leader Michael Pisaric, a geography professor at Carleton. The Inuvialuit, who live in the northwest Arctic, identified that a major surge had occurred in 1999, and assisted with field work.

The researchers studied the impact of salt water flooding on alder bushes along the coastline. More than half of the shrubs sampled were dead within a year of the 1999 surge, while an additional 37 per cent died within five years. A decade after the flood, the soils still contained high concentrations of salt. In addition, sediment core profiles from inland lakes revealed dramatic changes in the aquatic life – with a striking shift from fresh to salt-water species following the storm surge.

"Our findings show this is ecologically unprecedented over the last millennium," says Queen's biology professor and team member John Smol, Canada Research Chair in Environmental Change and winner of the 2004 NSERC Herzberg Gold Medal as Canada's top scientist. "The Arctic is on the front line of climate change. It's a bellwether of things to come: what affects the Arctic eventually will affect us all."

Since nearly all Arctic indigenous communities are coastal, the damage from future surges could also have significant social impacts. The team predicts that sea ice cover, sea levels and the frequency and intensity of storms and marine storm surges will become more variable in the 21st century.

Other members of the team include Trevor Lantz from the University of Victoria, Steven Kokelj from Indian and Northern Affairs Canada, Steven Solomon from the Geological Survey of Canada and Queen's undergraduate student Holly Nesbitt. Their findings are published in the prestigious international journal Proceedings of the National Academy of Sciences.

Research funding comes from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Polar Continental Shelf Program, the Cumulative Impact Monitoring Program, and Indian and Northern Affairs Canada.

Queen's School of Policy Studies Director Peter Harrison will chair the pivotal wrap-up conference of International Polar Year, From Knowledge to Action, to be held in Montreal in 2012.

PLEASE NOTE: A PDF copy of the Arctic coastline study, plus high resolution images, are available upon request. Contacts: Nancy Dorrance, 613.533.2869 nancy.dorrance@queensu.ca Queen's University News and Media Services

Lin Moody, 613-520-2600, ext. 8705 lin_moody@carleton.ca Carleton University Department of University Communications

Nancy Dorrance | EurekAlert!
Further information:
http://www.queensu.ca

Further reports about: Arctic Canada NSERC Polar Day Science TV Striking polar region sea ice sea level storm surges

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Bacterial Nanosized Speargun Works Like a Power Drill

26.09.2017 | Life Sciences

The fastest light-driven current source

26.09.2017 | Physics and Astronomy

Beer can lift your spirits

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>