Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stressed crops emit more methane than thought

19.08.2009
University of Calgary scientists say uncounted for source of greenhouse gas could promote global warming

Scientists at the University of Calgary have found that methane emission by plants could be a bigger problem in global warming than previously thought.

A U of C study says that when crops are exposed to environmental factors that are part of climate change -- increased temperature, drought and ultraviolet-B radiation -- some plants show enhanced methane emissions. Methane is a very potent greenhouse gas; 23 times more effective in trapping heat than carbon dioxide.

"Most studies just look at one factor. We wanted to mix a few of the environmental factors that are part of the climate change scenario to study a more true-to-life impact climate change has on plants," says David Reid, a professor in the Department of Biological Sciences who co-authored a paper with research associate Mirwais Qaderi in the advanced on-line edition of the journal Physiologia Plantarum.

Reid and Qaderi, who received funding from the University Research Grants Committee (URGC) and Natural Sciences and Engineering Research Council of Canada (NSERC), analyzed methane emissions from six important Canadian crops – faba bean, sunflower, pea, canola, barley and wheat – that were exposed to combinations of three components of global climate change: temperature, ultraviolet-B radiation and water stress (drought). What they found they say is troubling. These stresses caused plants to emit more methane. In a warmer, drier world methane might be a bigger contributor in global warming than previously thought.

When it comes to the greenhouse effect, methane could be considered the misunderstood and often overlooked orphan greenhouse gas. Much of the attention has been focused on carbon dioxide but more recently it has been realized that methane should also be considered as a very significant greenhouse gas. Its concentrations have more than doubled since pre-industrial times. While the growth rate of methane concentrations has slowed since the early 1990s, some scientists say this is only a temporary pause.

"Our results are of importance in the whole climate warming discussion because methane is such a potent greenhouse warming gas, says Qaderi. "It points to the possibility of yet another possible feedback phenomena which could add to global warming."

Since elevated levels of carbon dioxide has been observed to counteract the negative effects of some environmental stresses,

Qaderi and Reid are now studying the effect of increased carbon dioxide with factors such as drought, higher temperature and UVB on methane production in crops.

The paper "Methane emissions from six crop species exposed to three components of global climate change: temperature, ultraviolet-B radiation and water stress" by David M. Reid and Mirwais M. Qaderi is available in the advanced online issue of the journal Physiologica Plantarum: http://www3.interscience.wiley.com/journal/119880798/issue

Leanne Yohemas | EurekAlert!
Further information:
http://www.ucalgary.ca
http://www3.interscience.wiley.com/journal/119880798/issue

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>