Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Strange discovery: Bacteria built with arsenic

03.12.2010
In a study that could rewrite biology textbooks, scientists have found the first known living organism that incorporates arsenic into the working parts of its cells.

What's more, the arsenic replaces phosphorus, an element long thought essential for life. The results, based on experiments at the Stanford Synchrotron Radiation Lightsource, were published online today in Science Express.

"It seems that this particular strain of bacteria has actually evolved in a way that it can use arsenic instead of phosphorus to grow and produce life," said SSRL Staff Scientist Sam Webb, who led the research at the Department of Energy's SLAC National Accelerator Laboratory. "Given that arsenic is usually toxic, this finding is particularly surprising."

Phosphorus forms part of the chemical backbone of DNA and RNA, the spiraling structures that carry genetic instructions for life. It is also a central component of ATP, which transports the chemical energy needed for metabolism within cells. Scientists have for decades thought that life could not survive without it.

But this was not the case for a strain of Halomonadaceae bacteria called GFAJ-1, found in an eastern California lake. Colonies of these bacteria flourished, as expected, when given a steady supply of phosphorus along with other necessities; yet when researchers replaced the phosphorus with arsenic, the colony continued to grow.

This suggested to Felisa Wolfe-Simon, a NASA research fellow and geobiologist in residence with the U.S. Geological Survey, that the bacteria were using the arsenic in place of phosphorus.

"We already knew that other microbes can 'breathe' arsenic, but it seemed these bacteria could be doing something new: building parts of themselves out of arsenic," said Wolfe-Simon, the paper's lead author. "To see if that was the case, we brought samples to SSRL. I came armed with the knowledge that the bacteria were doing something really weird, and I knew that SSRL beamline 2-3, in Sam's hands, could tell us more."

Wolfe-Simon's overall goal was to see if the arsenic was intimately associated with the bacterial cells or simply attached to the outside. The team swept SSRL's hair-thin X-ray beam across a sample of bacteria that had been bathed in high concentrations of arsenic. The interaction between the X-rays and the sample revealed where and how the arsenic wound up inside the bacterial cells.

"We saw similarities in the distribution of arsenic and the distribution of iron and zinc," two metals that indicate where an organism's cellular material is located, Wolfe-Simon said. In contrast, the distribution of phosphorus didn't match the distribution of the other elements, suggesting that arsenic took the place of phosphorus in the bacteria's cellular material.

To confirm this suspicion, the team conducted another experiment with the SSRL beam, this time in a spectroscopic mode, which identifies the types and locations of specific atoms. The experiment revealed that the arsenic atoms' nearest neighbors were oxygen and, at slightly longer distances, carbon. This pattern and the specific distances between the three types of atoms are a near-perfect match with the way phosphorus atoms bind to other atoms in strands of conventional DNA.

Wolfe-Simon said that these experiments strongly suggest that the bacteria aren't just absorbing arsenic, but incorporating it into their own beings as "biological arsenic."

Further bolstering this view, the arsenic did not take the form that would be expected if, for example, an organism were trying to remove the toxin from its system, and it was not surrounded by the types of molecules that an organism might use to render the arsenic inert, Webb said. The fact that it was attached to carbon and oxygen, he said, is "what we would expect if it were actually being used to create DNA, RNA or proteins." This would make the bacterium strain GFAJ-1 the first organism known to use arsenic in place of phosphorus for growth.

"In theory, this knowledge will rewrite biology textbooks," Wolfe-Simon said. "Whenever you hear about 'diversity' in biology, it always means metabolic diversity—diversity in what organisms breathe or what they oxidize, how they make a living. It's assumed that however diverse organisms may be, they're all made of the same elements: carbon, hydrogen, nitrogen, oxygen, phosphorus and sulfur. This type of bacterium is not. And that suggests that there may be a whole new world of organisms to explore."

Next, the team plans to investigate specific ways these bacteria might use arsenic in proteins, fats and nucleic acids such as DNA.

"To do this, we'll need a bigger sample," said Webb. "Felisa and her team are working to grow that now, and we're looking forward to further studying the details of this amazing organism at SSRL."

This research was conducted by Felisa Wolfe-Simon (NASA Astrobiology Institute, U.S. Geological Survey), Jodi Switzer Blum (U.S. Geological Survey), Thomas R. Kulp (U.S. Geological Survey), Gwyneth W. Gordon (Arizona State University), Shelley E. Hoeft (U.S. Geological Survey), Jennifer Pett-Ridge (Lawrence Livermore National Laboratory), John F. Stolz (Duquesne University), Samuel M. Webb (SSRL and SLAC), Peter K. Weber (Lawrence Livermore National Laboratory), Paul C.W. Davies (NASA Astrobiology Institute, Arizona State University), Ariel D. Anbar (NASA Astrobiology Institute, Arizona State University), and Ronald S. Oremland (U.S. Geological Survey).

SLAC National Accelerator Laboratory is a multi-program laboratory exploring frontier questions in photon science, astrophysics, particle physics and accelerator research. Located in Menlo Park, California, SLAC is operated by Stanford University for the U.S. Department of Energy Office of Science. The Stanford Synchrotron Radiation Lightsource at SLAC is a DOE Office of Science national user facility which provides synchrotron radiation for research in chemistry, biology, physics and materials science to more than a thousand users each year. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Science and by the National Institutes of Health, National Center for Research Resources' Biomedical Technology Program.

Melinda Lee | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>