Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Straight Poop on Counting Tigers

22.06.2009
The Wildlife Conservation Society (WCS) announced today a major breakthrough in the science of saving tigers: high-tech DNA fecal sampling.

According to the study, researchers will be able to accurately count and assess tiger populations by identifying individual animals from the unique DNA signature found in their dung.

In the past, DNA was collected from blood or tissue samples from tigers that were darted and sedated. The authors say this new non-invasive technique represents a powerful new tool for measuring the success of future conservation efforts.

The study appears in the June 16th edition of the journal Biological Conservation. Authors of the study include: Samrat Mondol of the National Centre for Biological Sciences; K. Ullas Karanth, N. Samba Kumar, and Arjun M. Gopalaswamy of the Wildlife Conservation Society and Centre for Wildlife Studies; and Anish Andheria and Uma Ramakrishnan, also of the National Centre for Biological Sciences.

“This study is a breakthrough in the science of counting tiger numbers, which is a key yardstick for measuring conservation success,” said noted tiger scientist Dr. Ullas Karanth of the Wildlife Conservation Society. “The technique will allow researchers to establish baseline numbers on tiger populations in places where they have never been able to accurately count them before.”

The study took place in India’s Bandipur Reserve in Karnataka, a longterm WCS research site in the Western Ghats that supports a high abundance of tigers. Researchers collected 58 tiger scats following rigorous protocols, then identified individual animals through their DNA. Tiger populations were then estimated using sophisticated computer models. These results were validated against camera trap data, where individual tigers are photographed automatically and identified by their unique stripe pattern. Camera-trapping is considered the gold standard in tiger population estimation, but is impractical in several areas where tiger densities are low or field conditions too rugged.

“We see genetic sampling as a valuable additional tool for estimating tiger abundance in places like the Russian Far East, Sunderban mangrove swamps and dense rainforests of Southeast Asia where camera trapping might be impractical due to various environmental and logistical constraints,” said Karanth.

WCS has been engaged in saving tigers in the Western Ghats in association with the Indian government and several local conservation partners for over two decades.

The Wildlife Conservation Society saves wildlife and wild places worldwide. We do so through science, global conservation, education and the management of the world's largest system of urban wildlife parks, led by the flagship Bronx Zoo.

Together these activities change attitudes towards nature and help people imagine wildlife and humans living in harmony. WCS is committed to this mission because it is essential to the integrity of life on Earth. Visit: www.wcs.org

Special Note to the Media: If you would like to guide your readers or viewers to a web link where they can make donations in support of helping save wildlife and wild places, please direct them to: www.wcs.org/donation

Stephen Sautner | Newswise Science News
Further information:
http://www.wcs.org
http://www.wcs.org/donation

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>