Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stormwater Model To Inform Regulators On Future Development Projects

19.07.2010
North Carolina State University researchers have developed a computer model that will accurately predict stormwater pollution impacts from proposed real-estate developments – allowing regulators to make informed decisions about which development projects can be approved without endangering water quality.

The model could serve as a blueprint for similar efforts across the country.

“The model is designed to evaluate the amount of nitrogen and phosphorus found in stormwater runoff from residential and commercial developments – particularly runoff from a completed project, not a site that is under construction,” says Dr. Bill Hunt, an associate professor and extension specialist of biological and agricultural engineering at NC State who helped develop the model. “To comply with regional water-quality regulations, cities and counties have to account for nutrient loads,” Hunt says, “but the existing tools are antiquated and aren’t giving us sufficiently accurate data.”

The researchers developed the model using chemical, physical and land-use data specific to North Carolina and surrounding states. This allowed them to account for regional conditions, which will improve the model’s accuracy. “Because the model uses regional data, it could be modified easily for use east of the Blue Ridge Mountains in North Carolina and adjoining states,” Hunt says.

The model could also serve as a blueprint for similar efforts nationally. “The primary obstacle to applying this model outside North Carolina – in Florida or Colorado, for example – would be collecting relevant data from those areas and incorporating it into the model’s framework,” Hunt says. “The actual model itself would be fairly easy to modify.”

State and local government officials, as well as developers, can plug proposed development plans into the model and get an accurate estimate of the level of nutrients that would likely be included in stormwater runoff from the completed development site. This would give officials key data that they can use to determine whether a proposed development project should be allowed to move forward or require additional stormwater treatment.

The model was designed in response to state regulations limiting the amount of nutrients that can flow into Jordan Lake in central North Carolina. The regulations affect a host of North Carolina municipalities, including Durham, Greensboro, Chapel Hill, Cary and Chatham County.

In addition to its long-term applications elsewhere, the model will likely be used to help implement forthcoming stormwater treatment requirements for North Carolina’s Falls Lake Watershed.

The model will be unveiled July 23 at a workshop on stormwater controls to be held at NC State’s McKimmon Center on the university’s Raleigh campus. The model was developed by Hunt, NC State biological and agricultural engineering extension associate Kathy DeBusk, and Rich Gannon of the North Carolina Department of Environment and Natural Resources (NCDENR). The work was funded by a grant from NCDENR and was completed with assistance from the Center for Watershed Protection.

NC State’s Department of Biological and Agricultural Engineering is a joint department of the university’s College of Engineering and College of Agriculture and Life Sciences.

Matt Shipman | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>